摘要:
The present invention relates to variants of TRAF2 which demonstrate the ability to inhibit the TNF α signaling path-way. In particular, applicants have isolated a splice variant of TRAF2 referred to hereinafter as “TRAF2 truncated” or “TRAF2TR” and a TRAF2 expression construct with enhanced dominant negative properties, hereafter referred to as “TRAF2 truncated-deleted” or “TRAF2TD”. Both TRAF2TR and TRAF2TD have the ability to inhibit the TNF α signaling pathway and in TRAF2TD, this ability is greatly enhanced, greatly reducing the response to TNF α binding.
摘要:
The present invention relates to variants of TRAF2 which demonstrate the ability to inhibit the TNF α signaling pathway. In particular, applicants have isolated a splice variant of TRAF2 referred to hereinafter as “TRAF2 truncated” or “TRAF2TR” and a TRAF2 expression construct with enhanced dominant negative properties, hereafter referred to as “TRAF2 truncated-deleted” or “TRAF2TD”. Both TRAF2TR and TRAF2TD have the ability to inhibit the TNF α signaling pathway and in TRAF2TD, this ability is greatly enhanced, greatly reducing the response to TNF α binding.
摘要:
The present invention relates to human Akt3 proteins and polypeptides. The invention also relates to isolated nucleic acids encoding human Akt3, to vectors containing them and to their therapeutic uses, in particular for gene therapy. Expression of Akt3 inhibits cell death associated with hypoxia, apoptosis or necrosis.
摘要:
The present invention relates to human Akt3 proteins and polypeptides. The invention also relates to isolated nucleic acids encoding human Akt3, to vectors containing them and to their therapeutic uses, in particular for gene therapy. Expression of Akt3 inhibits cell death associated with hypoxia, apoptosis or necrosis.
摘要:
The present invention relates to human Akt3 proteins and polypeptides. The invention also relates to isolated nucleic acids encoding human Akt3, to vectors containing them and to their therapeutic uses, in particular for gene therapy. Expression of Akt3 inhibits cell death associated with hypoxia, apoptosis or necrosis.
摘要:
The present invention relates to human Akt3 proteins and polypeptides. The invention also relates to isolated nucleic acids encoding human Akt3, to vectors containing them and to their therapeutic uses, in particular for gene therapy. Expression of Akt3 inhibits cell death associated with hypoxia, apoptosis or necrosis.
摘要:
Compounds of formula (I): wherein: R2 is H or an optionally substituted C1-4 alkyl group; Y is either —(CH2)n—X—, where n is 1 or 2 and X is O, S, S(═O), S(═O)2, or NRN1, where RN1 is selected from H or optionally substituted C1-4 alkyl, or Y is —C(═O)NRN2—, where RN2 is selected from H, and optionally substituted C1-7 alkyl or C5-20 aryl; R3 is an optionally substituted C6 aryl group linked to a further optionally substituted C6 aryl group, wherein if both C6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings; A is a single bond or a C1-3 alkylene group; and R5 is either: (i) carboxy; (ii) a group of formula (II): or (iii) a group of formula (III): wherein R is optionally substituted C1-7 alkyl, C5-20 aryl or NRN3RN4, where RN3 and RN4 are independently selected from optionally substituted C1-4 alkyl; (iv) tetrazol-5-yl.
摘要:
A process is described for forming a plurality of polysilicon runs on the surface of a semiconductor substrate, such as a silicon substrate, at least one of the polysilicon runs having a resistor portion formed therein, and at least one of the polysilicon runs forming the conductive gate electrode of a self-aligned insulated silicon gate field effect device. A specific embodiment of the process involves forming protective oxide layer on the substrate with depressions or wells therein to define active area regions of field effect devices, depositing a layer of polysilicon to overly the protective oxide layers, implanting dopant ions in the polysilicon layer to establish an initial conductivity of the polysilicon corresponding to resistor material, patterning the polysilicon layer to define desired polysilicon runs, with at least one of the polysilicon runs traversing across the gate region and gate oxide of a field effect device to serve as the gate electrode thereof; establishing an oxide layer over the surface and then removing oxide to both expose the active areas of the field effect devices where not protected by the polysilicon gate electrodes and also to define a remaining resistor mask of the oxide which overlies and protects the resistor portions of the polysilicon runs; and applying dopant to render the unprotected portions of the polysilicon runs highly conductive relative to the oxide masked resistor portions thereof and to simultaneously dope the exposed active areas of field effect devices.
摘要:
Compounds of formula (I): wherein: R2 is H or an optionally substituted C1-4 alkyl group; Y is either —(CH2)n—X—, where n is 1 or 2 and X is O, S, S(═O), S(═O)2, or NRN1, where RN1 is selected from H or optionally substituted C1-4 alkyl, or Y is —C(═O)NRN2—, where RN2 is selected from H, and optionally substituted C1-7 alkyl or C5-20 aryl; R3 is an optionally substituted C6 aryl group linked to a further optionally substituted C6 aryl group, wherein if both C6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings; A is a single bond or a C1-3 alkylene group; and R5 is either: (i) carboxy; (ii) a group of formula (II): or (iii) a group of formula (III): wherein R is optionally substituted C1-7 alkyl, C5-20 aryl or NRN3RN4, where RN3 and RN4 are independently selected from optionally substituted alkyl; (iv) tetrazol-5-yl.
摘要:
Compounds of formula (I): wherein: R2 is H or an optionally substituted C1-4 alkyl group; Y is either —(CH2)n—X—, where n is 1 or 2 and X is O, S, S(═O), S(═O)2, or NRN1, where RN1 is selected from H or optionally substituted C1-4 alkyl, or Y is —C(═O)NRN2—, where RN2 is selected from H, and optionally substituted C1-7 alkyl or C5-20 aryl; R3 is an optionally substituted C6 aryl group linked to a further optionally substituted C6 aryl group, wherein if both C6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings; A is a single bond or a C1-3 alkylene group; and R5 is either: (i) carboxy; (ii) a group of formula (II): (iii) a group of formula (III): wherein R is optionally substituted C1-7 alkyl, C5-20 aryl or NRN3RN4, where RN3 and RN4 are independently selected from optionally substituted C1-4 alkyl; (iv) tetrazol-5-yl.