摘要:
A new method based on measuring the weight of a wafer (on which the layer of HSG has been deposited) before (W1) and after (W2) the surface of the HSG layer is coated with a layer of either photoresist or SOG. The difference delta W=W2−W1 provides an indicator of the roughness or smoothness of the surface of the deposited layer of HSG. This new method can also be based on measuring the weight W of rejected or dropped PR or SOG after the surface of the HSG layer has been coated with a layer of either photoresist or SOG. The weight of the rejected or dropped PR or SOG also provides an indicator of the roughness or smoothness of the surface of the deposited layer of HSG.
摘要:
A method for forming a self aligned contact without key holes using a two step contact deposition. The process begins by providing a semiconductor structure having conductive structures (such as bit lines) thereover with sidewalls and having a contact area adjacent to the conductive structures. The conductive structures comprise at least one conductive layer with a hard mask thereover. A spacer layer is formed over the hard mask and the substrate structure and anisotropically etched to form sidewall spacers on the sidewalls of the conductive structure. A second dielectric (IPO) layer is formed over the sidewall spacers, the hard mask, and the substrate structure, whereby the second dielectric layer has a keyhole. A contact opening is formed in the second dielectric layer over the contact area. A first contact layer having poor step coverage is formed in the contact openings and over the second dielectric layer, thereby plugging the keyhole without filling it. A second contact layer is formed over the first contact layer.
摘要:
This invention provides a method for forming a self aligned contact without key holes using a two step sidewall spacer deposition. The process begins by providing a semiconductor structure having a device layer, a first inter poly oxide layer (IPO-1), and a conductive structure (such as a bit line) thereover, and having a contact area on the device layer adjacent to the conductive structure. The semiconductor structure can further include an optional etch stop layer overlying the first inter poly oxide layer. The conductive structure comprises at least one conductive layer with a hard mask thereover. A first spacer layer is formed over the hard mask and the IPO-1 layer and anisotropically etched to form first sidewall spacers on the sidewalls of the conductive structure up to a level above the bottom of the hard mask and below the level of the top of the hard mask such that the profile of the first sidewall spacers are not concave at any point. A second spacer layer is formed over the first sidewall spacers and anisotropically etched to form second sidewall spacers, having a profile that is not concave at any point. A second inter poly oxide layer is formed over the second sidewall spacers, the hard mask, and the IPO-1 layer, whereby the second inter poly oxide layer is free from key holes. A contact opening is formed in the second inter poly oxide layer and the first inter poly oxide layer over the contact area. A contact plug is formed in the contact openings.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
摘要:
A new method is provided for the creation of a 1T RAM cell. Standard processing is applied to create STI trenches in the surface of a substrate, N2 implantations are performed into the sidewalls of the STI trenches. A layer of lining oxide is created, the implanted N2 interacts with the lining oxide to form SiON over exposed surfaces of the STI trenches. STI oxide is deposited and polished, filling the STI trenches there-with. Crown patterning is performed to define capacitor areas, the crown patterning stops on a layer of etch stop material and the created SION and partially removes STI oxide from the STI trenches. Layers of etch stop material, exposed SiON and pad oxide are removed, exposing the surface of the silicon substrate, the etched layers of STI oxide are not affected by this removal. A layer of SAC oxide is grown, n-well and p-well implantations are performed into the surface of the substrate. The layer of SAC oxide is removed, gate oxide is grown, polysilicon is deposited and patterned and etched, forming polysilicon gate material and polysilicon top plate of the capacitor. Standard processing is further applied to complete the 1T-RAM cell by providing gate spacers and impurity implantations for the gate electrode, by saliciding contact surfaces and by providing contacts to the points of contact of the cell.
摘要:
A process for forming a composite insulator spacer on the sides of a buried stack capacitor structure, wherein the buried stack capacitor structure is located overlying a portion of an insulator filled, shallow trench isolation (STI) region, has been developed. A thin silicon nitride spacer is first formed on the sides of the completed buried stack capacitor structure, followed by deposition of a silicon oxide layer. An anisotropic dry etch procedure is next employed removing a top portion of the silicon oxide layer, and resulting in a partially defined silicon oxide spacer. A critical wet etch procedure is next used to remove the bottom portion of the silicon oxide layer, defining the final silicon oxide spacer of the composite insulator spacer, now comprised of a silicon oxide spacer on an underlying silicon nitride spacer. The wet etch procedure allows a gradual slope to be created at the composite insulator spacer—STI region interface, reducing the risk of leaving, or forming polysilicon residuals or stringers on the underlying surface, which can occur during definition of a MOSFET gate structure. The elimination of the polysilicon stringers reduces the risk of leakage between SRAM cell elements, such as buried stack capacitor structures, and MOSFET devices.
摘要:
A process for fabricating a buried stack capacitor structure, to be used in a one transistor, RAM cell, has been developed. The process features formation of a self-aligned, ring shaped storage node opening, formed in a top portion of an silicon oxide filled, shallow trench shape, via a selective dry etch procedure. The selective dry etch procedure in combination with subsequent selective wet etch procedures, create bare portions of semiconductor substrate at the junction of the ring shaped storage node opening and the adjacent top surface of semiconductor, allowing a heavily doped region to be created in this region. The presence of the heavily doped region reduces the node to substrate resistance encountered when a storage node structure is formed in the ring shaped storage node structure, as well as on the overlying the heavily doped region.
摘要:
An information handling system circuit board has an opening formed through it proximate a coupling point of an integrated circuit to the circuit board. The opening manages stress at the coupling point of the integrated circuit to the circuit board to reduce the risk of damage to the coupling point during deformation of the circuit board, such as when the circuit board is coupled to a chassis or when a component is pressed into the circuit board. In one embodiment, rectangular openings are formed at diagonally opposed corners of a BSA integrated circuit. In alternative embodiments, openings of varying shape, such as slots or curved slots, are formed at selected corners of the integrated circuit.