摘要:
Methods of thinning a plurality of semiconductor wafers and apparatuses for carrying out the same are disclosed. A grinding module within a set of grinding modules receives and grinds a semiconductor wafer. A polishing module receives the semiconductor wafer from the grinding module and polishes the wafer. The polishing module is configured to polish the semiconductor wafer in less time than the grinding module is configured to grind the corresponding wafer.
摘要:
A wafer edge trim blade includes a round blade body and at least one slot formed inward from an outside edge of the round blade body. The at least one slot is configured to remove debris generated during wafer edge trimming using the wafer edge trim blade.
摘要:
A method includes forming top metal lines over a semiconductor substrate, wherein the semiconductor substrate is a portion of a wafer having a bevel. When the top metal lines are exposed, an etchant is supplied on the bevel, wherein regions of the wafer sprayed with the etchant has an inner defining line forming a first ring having a first diameter. A trimming step is performed to trim an edge portion of the wafer, wherein an edge of a remaining portion of the wafer has a second diameter substantially equal to or smaller than the first diameter.
摘要:
A grinding wheel comprises an outer base with a first attached grain pad; and an inner frame with a second attached grain pad; and a spindle axis shared by the outer base and the inner frame, wherein at least one of the outer base and the inner frame can move independently along the shared spindle axis; and wherein the outer base, the inner frame, and the shared spindle axis all have a same center. A grinding system comprises an above said grinding wheel, and a wheel head attached to the shared spindle axis, capable of moving vertically, in addition to a motor driving the grinding wheel to spin; and a chuck table for fixing a wafer on top of the chuck table; wherein the grinding wheel overlaps a portion of the chuck table, each capable of spinning to the opposite direction of another.
摘要:
A grinding wheel comprises an outer base with a first attached grain pad; and an inner frame with a second attached grain pad; and a spindle axis shared by the outer base and the inner frame, wherein at least one of the outer base and the inner frame can move independently along the shared spindle axis; and wherein the outer base, the inner frame, and the shared spindle axis all have a same center. A grinding system comprises an above said grinding wheel, and a wheel head attached to the shared spindle axis, capable of moving vertically, in addition to a motor driving the grinding wheel to spin; and a chuck table for fixing a wafer on top of the chuck table; wherein the grinding wheel overlaps a portion of the chuck table, each capable of spinning to the opposite direction of another.
摘要:
A method includes forming top metal lines over a semiconductor substrate, wherein the semiconductor substrate is a portion of a wafer having a bevel. When the top metal lines are exposed, an etchant is supplied on the bevel, wherein regions of the wafer sprayed with the etchant has an inner defining line forming a first ring having a first diameter. A trimming step is performed to trim an edge portion of the wafer, wherein an edge of a remaining portion of the wafer has a second diameter substantially equal to or smaller than the first diameter.
摘要:
A driving circuit of a light emitting diode (LED), including a driving unit, a current pre-charging unit and a feedback unit, is provided. The driving unit outputs a driving power to drive the LEDs and outputs at least one first feedback signal according to the current conducted in the LEDs. The current pre-charging unit is coupled to an output of the driving unit to provide a current path to the driving unit and generates a second feedback signal. One of the at least one first feedback signal is selected to adjust the driving power when the enable signal is at a first logic level; the second feedback signal is selected to adjust the driving power when the enable signal is at a second logic level so as to maintain a current to drive the LEDs.
摘要:
A driving apparatus for driving at least one first light emitting diode unit and a second light emitting diode unit includes a data transmitting unit and a driving unit. The data transmitting unit is used for receiving and storing driving data. The driving data includes first data corresponding to a first driving signal and second data corresponding to a second driving signal. The driving unit divides the first driving signal into a plurality of first sub-driving signals and the second driving signal into a plurality of second sub-driving signals, and then alternately outputs the first sub-driving signals and the second sub-driving signals to alternately drive the first light emitting diode unit and the second light emitting diode unit.
摘要:
A driving circuit, a decoding circuit and a decoding method thereof are provided. The decoding circuit includes an oscillator and a decoder including a frequency determining unit and a decoding unit. The frequency determining unit receives a clock signal and a data signal which is corresponding to DMX512 protocol, and samples one slot of the data signal according to the clock signal to generate a sample number corresponding to a slot period of the slot. Then, the frequency determining unit outputs a reference signal corresponding to the frequency of the clock signal according to the sample number. The decoding unit samples the data signal according to the clock signal and the reference signal to decode data carried on the data signal. The decoding circuit is able to sample the data signal correctly without disposing any external frequency adjusting element.
摘要:
A rubber-modified polystyrene resin composition is for making an electroplatable article which has a sectioned layer defining a unit area. The rubber-modified polystyrene resin composition includes a resin matrix, occlusion rubber particles dispersed in the resin matrix, and non-occlusion rubber particles dispersed in the resin matrix. A total sectional area ratio of the occlusion rubber particles to the non-occlusion rubber particles in the unit area ranges from 1.1 to 14.