摘要:
One system includes an inspection subsystem configured to direct light to a spot on the wafer and to generate output signals responsive to light scattered from the spot on the wafer. The system also includes a gas flow subsystem configured to replace a gas located proximate to the spot on the wafer with a medium that scatters less of the light than the gas thereby increasing the sensitivity of the system. In addition, the system includes a processor configured to detect defects on the wafer using the output signals.
摘要:
Systems and methods for inspecting a wafer with increased sensitivity are provided. One system includes an inspection subsystem configured to direct light to a spot on the wafer and to generate output signals responsive to light scattered from the spot on the wafer. The system also includes a gas flow subsystem configured to replace a gas located proximate to the spot on the wafer with a medium that scatters less of the light than the gas thereby increasing the sensitivity of the system. In addition, the system includes a processor configured to detect defects on the wafer using the output signals.
摘要:
Systems and methods for inspecting a wafer with increased sensitivity are provided. One system includes an inspection subsystem configured to direct light to a spot on the wafer and to generate output signals responsive to light scattered from the spot on the wafer. The system also includes a gas flow subsystem configured to replace a gas located proximate to the spot on the wafer with a medium that scatters less of the light than the gas thereby increasing the sensitivity of the system. In addition, the system includes a processor configured to detect defects on the wafer using the output signals.
摘要:
Systems and methods for inspecting a specimen are provided. One system includes an illumination subsystem configured to direct light to the specimen at an oblique angle of incidence. The light is polarized in a plane that is substantially parallel to the plane of incidence. The system also includes a detection subsystem configured to detect light scattered from the specimen. The detected light is polarized in a plane that is substantially parallel to the plane of scattering. In addition, the system includes a processor configured to detect defects on the specimen using signals generated by the detection subsystem. In one embodiment, such a system may be configured to detect defects having a size that is less than half of a wavelength of the light directed to the specimen.
摘要:
Methods and systems for inspecting a specimen are provided. One method includes directing ultraviolet light to a specimen. The method also includes detecting light scattered from the specimen having a selected wavelength range. In addition, the method includes detecting features, defects, or light scattering properties of the specimen using signals representative of the detected light. One inspection system includes an illumination subsystem configured to direct ultraviolet light to a specimen. The system also includes a channel configured to detect light scattered from the specimen having a selected wavelength range. In addition, the system includes a processor configured to detect features, defects, or light scattering properties of the specimen using signals that are representative of the detected light.
摘要:
Systems and methods for inspecting a wafer with increased sensitivity are provided. One system includes an inspection subsystem configured to direct light to a spot on the wafer and to generate output signals responsive to light scattered from the spot on the wafer. The system also includes a gas flow subsystem configured to replace a gas located proximate to the spot on the wafer with a medium that scatters less of the light than the gas thereby increasing the sensitivity of the system. In addition, the system includes a processor configured to detect defects on the wafer using the output signals.
摘要:
A surface scanning wafer inspection system with independently adjustable scan pitch and associated methods of operation are presented. The scan pitch may be adjusted independently from an illumination area on the surface of a wafer. In some embodiments, scan pitch is adjusted while the illumination area remains constant. For example, defect sensitivity is adjusted by adjusting the rate of translation of a wafer relative to the rate of rotation of the wafer without additional optical adjustments. In some examples, the scan pitch is adjusted to achieve a desired defect sensitivity over an entire wafer. In other examples, the scan pitch is adjusted during wafer inspection to optimize defect sensitivity and throughput. In other examples, the scan pitch is adjusted to maximize defect sensitivity within the damage limit of a wafer under inspection.
摘要:
Systems and methods for inspecting a specimen with light at varying power levels are provided. One system configured to inspect a specimen includes a light source configured to generate light. The system also includes a power attenuator subsystem configured to alter a power level of the light directed to the specimen during inspection between at least two power levels including a full power level and a minimum power level equal to or greater than about 10% of the full power level. In addition, the system includes a detection subsystem configured to generate output responsive to the light scattered from the specimen. The output can be used to detect defects on the specimen.
摘要:
A method and apparatus for producing high frequency dynamically focused oblique laser illumination for a spinning wafer inspection system. The focus is changed by changing the beam direction incidence angle so as to bring focal spot onto the wafer surface.Disclosed herein is a system and method for automatic beam shaping (i.e., spot size) and steering (i.e., position) for a spinning wafer inspection system, combined into a single module. Also disclosed is a method and system for measuring the beam position/size/shape and angle with sufficient resolution to make corrections using feedback from the monitor.
摘要:
The illumination power density of a multi-spot inspection system is adjusted in response to detecting a large particle in the inspection path of an array of primary illumination spots. At least one low power, secondary illumination spot is located in the inspection path of an array of relatively high power primary illumination spots. Light scattered from the secondary illumination spot is collected and imaged onto one or more detectors without overheating the particle and damaging the wafer. Various embodiments and methods are presented to distinguish light scattered from secondary illumination spots. In response to determining the presence of a large particle in the inspection path of a primary illumination spot, a command is transmitted to an illumination power density attenuator to reduce the illumination power density of the primary illumination spot to a safe level before the primary illumination spot reaches the large particle.