摘要:
A balun transformer includes a first conductive pattern having one end provided as an input/output port of an unbalanced signal, a second conductive pattern electromagnetically coupled to the first conductive pattern and having both ends provided as input/output ports of a balanced signal, and a first variable capacitor connected between a ground part and a middle part of an electrical length of the second conductive pattern.
摘要:
There is provided a spiral inductor including an insulation board formed into a flat-plate shape; a conductive pattern having a spiral shape and formed at least one surface of the insulation board, wherein the conductive pattern varies in line width according to a distance from one end of the conductive pattern forming a spiral.
摘要:
Provided is a dual-system transmitting device comprising a chaos signal generator that generates a chaos signal; a band-pass filter that filters the generated chaos signal into a signal within an information transmission bandwidth preset in a transmission side; an impulse signal generator that generates an impulse signal synchronized with a transmitted signal; a switching element that selectively outputs the chaos signal passing through the band-pass filter and the generated impulse signal; an amplifier that amplifies the signal selected by the switching element; and a signal transmitting unit that transmits the signal amplified by the amplifier through an antenna. When the signal amplified by the amplifier is a chaos signal, the signal transmitting unit modulates the amplified signal through an OOK (on-off keying) scheme such that the signal is transmitted as a carrier of a transmitted signal. When the signal amplified by the amplifier is an impulse signal, the signal transmitting unit passes the signal to transmit.Provided is a dual-system receiving device, which is applied to both a received signal using a chaos signal as a carrier and a received signal using an impulse signal as a carrier, the dual-system receiving device comprising a band-pass filter that filters a received signal into a signal within an information transmission bandwidth preset in a reception side; an amplifier that amplifies the filtered received signal; a first demodulator that, when the amplified received signal is a received signal using a chaos signal as a carrier, demodulates the amplified received signal; a second demodulator that, when the amplified received signal is a received signal using an impulse signal as a carrier, demodulates the amplified received signal; and a switching element that selectively outputs the received signal amplified by the amplifier to the first or second demodulator.
摘要:
Provided is a device for generating a chaotic signal comprising a PN signal generator that is composed of a digital logic circuit and generates a digital pseudo random signal with a predetermined frequency; a voltage control that generates a clock signal with a predetermined frequency; a mixer that mixes the pseudo random signal and the clock signal so as to generate a chaotic signal to output; and a band-pass filter that filters the chaotic signal, output from the mixer, into a chaotic signal of a desired band and then outputs the filtered signal.
摘要:
A current mode logic (CML)-CMOS converter comprises an input stage that is turned on/off by receiving an input voltage from the outside; a voltage control unit that outputs a constant voltage; a first switching unit that is connected to the input stage and the voltage control unit and is turned on/off by the constant voltage applied from the voltage control unit; and a second switching unit that is connected to the input stage and is turned on/off by a signal applied from the input stage.
摘要:
Provided is a method for compensating performance degradation of a radio frequency integrated circuit (RFIC) using an EM simulation. The method includes the steps of: (a) extracting the design specifications of the RFIC so as design and simulate a circuit; (b) designing the layout of the designed and simulated circuit, and extracting layout parameters by using the designed layout; (c) simplifying the layout and carrying out the EM simulation to extract performance parameters; (d) carrying out a circuit simulation by using the extracted layout parameters and performance parameters, and judging whether the results of the circuit simulation satisfy the design specifications of the RFIC or not; (e) when it is judged that the results of the circuit simulation satisfy the design specifications of the RFIC, performing a circuit manufacturing process; and (f) when it is not judged that the results of the circuit simulation satisfy the design specifications of the RFIC, partially removing the layout, and carrying out the EM simulation, thereby analyzing and compensating a performance degradation region.
摘要:
Provided is a method for compensating performance degradation of a radio frequency integrated circuit (RFIC) using an EM simulation. The method includes the steps of: (a) extracting the design specifications of the RFIC so as design and simulate a circuit; (b) designing the layout of the designed and simulated circuit, and extracting layout parameters by using the designed layout; (c) simplifying the layout and carrying out the EM simulation to extract performance parameters; (d) carrying out a circuit simulation by using the extracted layout parameters and performance parameters, and judging whether the results of the circuit simulation satisfy the design specifications of the RFIC or not; (e) when it is judged that the results of the circuit simulation satisfy the design specifications of the RFIC, performing a circuit manufacturing process; and (f) when it is not judged that the results of the circuit simulation satisfy the design specifications of the RFIC, partially removing the layout, and carrying out the EM simulation, thereby analyzing and compensating a performance degradation region.
摘要:
A radio frequency (RF) switch circuit in which an RF switch and a switch controller are formed on a single CMOS substrate and floating resistors are connected to a deep N type well substrate, an N type well substrate, and a P type well substrate to thereby increase linearity with respect to input power. In the RF switch having at least one NMOS (N type Metal Oxide Semiconductor) switch changing a transmission path of an RF signal, an N type terminal formed on a first deep N type well substrate receives driving power through a floating resistor, a P type terminal formed on a first P type substrate receives body power through a floating resistor, and the two N type terminals formed on the first P type substrate receive gate power through a floating resistor, and in the switch controller having at least one NMOS switch and at least one PMOS (P type Metal Oxide Semiconductor) switch controlling changing of a path of the RF switch, an N type terminal formed on a second deep N type well substrate and an N type terminal formed on the first N type substrate receive driving power through floating resistors.
摘要:
Disclosed herein is a resistor-sharing switching circuit, including: a first switching element turning on/off between a first input and output terminal and a second input and output terminal; a second switching element turning on/off between the first input and output terminal and a third input and output terminal; a signal transmission unit connected to both a control terminal of the first switching element and a control terminal of the second switching element; and a resistor having one end connected to the signal transmission unit and the other end connected to a control signal input terminal.
摘要:
Disclosed herein are an inverter and an antenna circuit. The inverter that receives control signals, inverts the control signals including a first control signal, a second control signal, and a third control signal, and outputs the inverted control signals, includes: a first MOS transistor having a gate to which a first control signal is applied and a source that is grounded; a second MOS transistor having a gate to which a third control signal is applied and a source to which a second control signal is applied; and a third MOS transistor having a gate to which a second control signal is applied and a source to which a third control signal is applied, wherein drains of the first MOS transistor, the second MOS transistor, and the third MOS transistor are connected to an output terminal.