摘要:
A method of decoding enhanced uplink absolute grant channel (E-AGCH) transmissions in a wireless transmit/receive unit (WTRU). E-AGCH data is received, the E-AGCH data including a cyclic redundancy check (CRC) part and a data part, the CRC part having been masked with a WTRU identity (ID). The CRC part and the data part are demultiplexed and the CRC part is demasked with a first WTRU ID. A first CRC is performed with the data part and the CRC part demasked with the first WTRU ID. The data part is decoded on a condition that the first CRC passes.
摘要:
A wireless communication method and apparatus for detecting and decoding enhanced dedicated channel (E-DCH) hybrid automatic repeat request (H-ARQ) indicator channel (E-HICH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-HICH transmissions and detects an H-ARQ indicator transmitted via the E-HICH by performing a binary hypothesis test. The WTRU then generates an acknowledgement (ACK) message or a non-acknowledgement (NACK) message based on the detected H-ARQ indicator. A reliability test may be further performed to improve performance, whereby the binary hypothesis test may be performed only if the reliability test is passed.
摘要:
A method of decoding enhanced uplink absolute grant channel (E-AGCH) transmissions in a wireless transmit/receive unit (WTRU). E-AGCH data is received, the E-AGCH data including a cyclic redundancy check (CRC) part and a data part, the CRC part having been masked with a WTRU identity (ID). The CRC part and the data part are demultiplexed and the CRC part is demasked with a first WTRU ID. A first CRC is performed with the data part and the CRC part demasked with the first WTRU ID. The data part is decoded on a condition that the first CRC passes.
摘要:
A wireless communication method and apparatus for decoding enhanced dedicated channel (E-DCH) absolute grant channel (E-AGCH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-AGCH data which includes a cyclic redundancy check (CRC) part and a data part. The CRC part is masked with a WTRU identity (ID) at a Node-B. The CRC part and the data part are demultiplexed and the CRC part is demasked with the WTRU ID. A CRC is then performed with the demasked CRC part. If the CRC passes the data part is sent to an enhanced uplink medium access control (MAC-e) entity. The WTRU ID may be a primary E-DCH radio network temporary identity (E-RNTI) or a secondary E-RNTI. When the E-AGCH data is transmitted over a 10 ms frame, if the CRC fails, E-AGCH data via subsequent subframe may be soft combined with the previous E-AGCH data.
摘要:
A wireless communication method and apparatus for decoding enhanced dedicated channel (E-DCH) absolute grant channel (E-AGCH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-AGCH data which includes a cyclic redundancy check (CRC) part and a data part. The CRC part is masked with a WTRU identity (ID) at a Node-B. The CRC part and the data part are demultiplexed and the CRC part is demasked with the WTRU ID. A CRC is then performed with the demasked CRC part. If the CRC passes the data part is sent to an enhanced uplink medium access control (MAC-e) entity. The WTRU ID may be a primary E-DCH radio network temporary identity (E-RNTI) or a secondary E-RNTI. When the E-AGCH data is transmitted over a 10 ms frame, if the CRC fails, E-AGCH data via subsequent subframe may be soft combined with the previous E-AGCH data.
摘要:
A composite diode (100) includes a first conductive sheet, (110) a second conductive sheet, (120) and a nonlinear polymer composite material (130) sandwiched therebetween. The nonlinear polymer composite material comprises nonlinear inorganic particles (150) retained in a polymeric binder material (140). Methods of making the composite diode, and electronic devices including them, are also disclosed.
摘要:
A method for compensating for a wavelength shift in a wavelength selective switch (WSS), and a device therefor. The device comprises a fixed seat (301) as well as a rotation beam (304) and a compensation block (302) that have different thermal expansion amounts, the rotation beam (304) and the compensation block (302) being fixedly adhered to the fixed seat (301). In the method, a combined structure of the rotation beam (304) and the compensation block (302) with different thermal expansion amounts is adopted; the combined structure rotates by means of different expansion amounts generated by the rotation beam (304) and the compensation block (302) at the same external temperature, and further drives an optical element of the WSS to rotate, hence compensating for a wavelength shift of the WSS. The method is safe and reliable; the device has a simple structure, and is convenient to encapsulate, is applicable to various WSS optical paths, and does not affect advantages of the optical path structure of the WSS.
摘要:
Described herein are methods to enable wireless cellular operation in unlicensed and lightly licensed, (collectively referred to as license exempt spectrum. Cognitive methods are used to enable use of unlicensed bands and/or secondary use of lightly licensed bands. Wireless devices may use licensed exempt spectrum as new bands in addition to the existing bands to transmit to a wireless transmit/receive unit (WTRU) in the downlink direction, or to a base station in the uplink direction. The wireless devices may access license exempt spectrum for bandwidth aggregation or relaying using a carrier aggregation framework. In particular, a primary component carrier operating in a licensed spectrum is used for control and connection establishment and a second component carrier operating in a licensed exempt spectrum is used for bandwidth extension.
摘要:
Two network nodes may exchange messages through a relay using physical-layer network coding combined with forward error correction coding (FEC). The relay determines a prime field order based on the channel condition and communicates the field order to the network nodes. Each network node encodes an outgoing message with linear codes over a field such as finite field of the field order, and transmits a signal carrying the encoded outgoing message. The relay receives a composite signal carrying the summation of the messages from the two network nodes. The relay decodes the composite signal and extracts a composite message with linear codes over finite field of field order, and broadcasts a signal carrying the composite message. Each network node receives the signal from the relay and extracts the message intended for it using linear subtraction over finite field of field order.
摘要:
An apparatus for improving transmission bandwidth is provided in the embodiments of the present disclosure, which includes: a signal transmission line, side grounds located at two sides of the signal transmission line, and a capacitor disposed between the signal transmission line and the side grounds. The signal transmission line comprises a microstrip line, and the signal transmission line and the side grounds form a coplanar waveguide transmission line together. On a transmission channel connected through a bonding wire, a capacitor is disposed between a signal transmission line and side grounds. An inductor-capacitor (LC) resonance circuit is formed by using inductance characteristics presented by the bonding wire and the capacitor connected in parallel with the bonding wire, and a resonance point is formed within a frequency band in a frequency domain.