摘要:
The present invention relates to a method for protecting a hydrogen separation membrane from particulate contaminants in the process of producing or purifying hydrogen by using the separation membrane. The protection layer, wherein a cermet is formed by coating a ceramic and a metal able to cause surface movement of hydrogen molecules and hydrogen atoms to the surface of the separation membrane, plays the role of blocking contact between the separation membrane and particles (contaminant or catalyst) contained in the gas. In this way, it is possible to improve the durability of the hydrogen separation membrane and to minimize effects on the hydrogen permeability of the separation membrane.
摘要:
The present invention relates to a method for protecting a hydrogen separation membrane from particulate contaminants in the process of producing or purifying hydrogen by using the separation membrane. The protection layer, wherein a cermet is formed by coating a ceramic and a metal able to cause surface movement of hydrogen molecules and hydrogen atoms to the surface of the separation membrane, plays the role of blocking contact between the separation membrane and particles (contaminant or catalyst) contained in the gas. In this way, it is possible to improve the durability of the hydrogen separation membrane and to minimize effects on the hydrogen permeability of the separation membrane.
摘要:
The present invention relates to a method for developing fuel such as various raw materials and biodiesel having hydrocarbon wherein a carbon-carbon double bond and oxygen are removed by a hydrotreating reaction using a proton medium having conductivity, and the present invention is capable of producing advanced biofuel at low costs from various hydrocarbon sources and improving energy efficiency and hydrogen usage efficiency.
摘要:
The present invention relates to a micro-channel water-gas shift (WGS) reaction device for WGS for generating hydrogen and pre-combustion carbon capture and storage (CCS) from coal gasification, the device using a micro-channel heat exchanger and through-type metal catalyst capable of rapidly dissipating heat generated during single-stage WGS reaction of high concentration CO in a high temperature space.
摘要:
The present invention relates to a micro-channel water-gas shift (WGS) reaction device for WGS for generating hydrogen and pre-combustion carbon capture and storage (CCS) from coal gasification, the device using a micro-channel heat exchanger and through-type metal catalyst capable of rapidly dissipating heat generated during single-stage WGS reaction of high concentration CO in a high temperature space.
摘要:
Disclosed is a hydrocarbon reforming device using a micro channel heater capable of utilizing combustion heat of a fuel as an energy source for reforming reaction of hydrocarbon, which includes metal sheets having micro channels laminated in plural, thus being suitably used as a middle and small compact type device for hydrogen production. Specifically, in the case where a hydrogen purification process is applied to a hydrogen production device combined with a separation membrane, since the hydrogen-containing gas, which does not penetrate the separation membrane, can be utilized as a fuel, the inventive device may be utilized as a hydrogen production system having high efficiency.
摘要:
The present invention relates to a hydrogen production module by an integrated reaction/separation process, and a hydrogen production reactor using the same, and more specifically, provides a hydrogen production apparatus which laminates a plurality of layered unit cells, is mounted in a pressure-resistant chamber, and can be operated at a high pressure, wherein the unit cell comprises a first modified catalyst, and a second modified catalyst opposite to a hydrogen separator. The hydrogen production module can produce hydrogen using a hydrocarbon, carbon monoxide and an alcohol as sources. Particularly, all the modified catalysts are formed into a porous metal plate form, thereby maximizing the heat transfer effect necessary for reaction. While a reaction and separation of hydrogen simultaneously occur, separated reactants permeate the first modified catalyst so as to come in contact with the same, and then pass through the gap between the hydrogen separator and the second modified catalyst opposite to each other. Therefore, it is possible to obtain a high efficiency over the equilibrium conversion rate of reaction temperature, and high purity hydrogen can be obtained.
摘要:
Disclosed is a hydrocarbon reforming device using a micro channel heater capable of utilizing combustion heat of a fuel as an energy source for reforming reaction of hydrocarbon, which includes metal sheets having micro channels laminated in plural, thus being suitably used as a middle and small compact type device for hydrogen production. Specifically, in the case where a hydrogen purification process is applied to a hydrogen production device combined with a separation membrane, since the hydrogen-containing gas, which does not penetrate the separation membrane, can be utilized as a fuel, the inventive device may be utilized as a hydrogen production system having high efficiency.
摘要:
The present invention relates to a hydrogen production module by an integrated reaction/separation process, and a hydrogen production reactor using the same, and more specifically, provides a hydrogen production apparatus which laminates a plurality of layered unit cells, is mounted in a pressure-resistant chamber, and can be operated at a high pressure, wherein the unit cell comprises a first modified catalyst, and a second modified catalyst opposite to a hydrogen separator. The hydrogen production module can produce hydrogen using a hydrocarbon, carbon monoxide and an alcohol as sources. Particularly, all the modified catalysts are formed into a porous metal plate form, thereby maximizing the heat transfer effect necessary for reaction. While a reaction and separation of hydrogen simultaneously occur, separated reactants permeate the first modified catalyst so as to come in contact with the same, and then pass through the gap between the hydrogen separator and the second modified catalyst opposite to each other. Therefore, it is possible to obtain a high efficiency over the equilibrium conversion rate of reaction temperature, and high purity hydrogen can be obtained.
摘要:
The present invention relates to a multilayer module for hydrogen separation using a pressure-resistant chamber so that unit cells using a metal separation membrane through which only hydrogen selectively passes are stacked to improve separation efficiency, and a mixed gas is uniformly supplied into each of the unit cells. In the multilayer module, the unit cells are stacked on each other, and the mixed gas is supplied into the chamber. Also, mixed gas input ports are each disposed in the side surfaces of the unit cells to supply the mixed gas.