-
公开(公告)号:US20240310525A1
公开(公告)日:2024-09-19
申请号:US18671823
申请日:2024-05-22
Applicant: LEICA GEOSYSTEMS AG
Inventor: Simon MARK , Klaus BEREUTER , Benjamin MÜLLER , Roman STEFFEN , Burkhard BÖCKEM , Jürgen DOLD , Jochen SCHEJA , Lukas HEINZLE , Charles Leopold Elisabeth DUMOULIN
IPC: G01S17/89 , G01B11/00 , G01B11/02 , G01B11/22 , G01S7/48 , G01S7/481 , G01S7/497 , G01S17/42 , G01S17/894 , G06T11/00
CPC classification number: G01S17/89 , G01S7/4813 , G01S7/4817 , G01S7/4972 , G01S17/42 , G01B11/00 , G01B11/002 , G01B11/024 , G01B11/22 , G01S7/4808 , G01S7/4811 , G01S7/4814 , G01S17/894 , G06T11/00 , G06T2207/10028
Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are 10 arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
-
公开(公告)号:US20230296778A1
公开(公告)日:2023-09-21
申请号:US18201669
申请日:2023-05-24
Applicant: LEICA GEOSYSTEMS AG
Inventor: Simon MARK , Klaus BEREUTER , Benjamin MÜLLER , Roman STEFFEN , Burkhard BÖCKEM , Jürgen DOLD , Jochen SCHEJA , Lukas HEINZLE , Charles Leopold Elisabeth DUMOULIN
CPC classification number: G01S17/89 , G01S7/4813 , G01S7/4817 , G01S7/4972 , G01S17/42 , G01B11/00
Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
-
公开(公告)号:US20210405198A1
公开(公告)日:2021-12-30
申请号:US17362268
申请日:2021-06-29
Applicant: LEICA GEOSYSTEMS AG
Inventor: Roland GRAF , Roman STEFFEN
Abstract: The invention relates to a reality capture device for generating a digital three-dimensional representation of an environment, particularly for surveying or monitoring an infrastructure. The reality capture device comprises a laser scanner and a housing enclosing an internal space, which has a first and a second climate zone. The reality capture device has a common air circulation element to provide active air circulation through an air guiding arrangement, wherein the air guiding arrangement is configured in such a way that different air flow characteristics of the active air circulation are achieved with respect to different regions associated with cooling of the two different climate zones. The first climate zone is configured to be free of active air circulation and the second climate zone is configured to have active air circulation for directing air to the inside part of a corresponding heat dissipation element.
-
公开(公告)号:US20250085396A1
公开(公告)日:2025-03-13
申请号:US18963392
申请日:2024-11-27
Applicant: LEICA GEOSYSTEMS AG
Inventor: Jürgen DOLD , Burkhard BÖCKEM , Roman STEFFEN , Lukas HEINZLE , Ralph Patrick HARTI , Hendrik DESCHOUT , Roland GRAF , Mattheus Henricus Maria MICHELS , Michael DIETSCHI , Adam BAIJRIC , Andrea BONFANTI , Kristian Walker MORIN , Simon MARK , Klaus BEREUTER , Markus RIBI , Michele PORTENTOSO , Matthias WIESER
IPC: G01S7/48 , G01S7/481 , G01S7/51 , G01S17/42 , G01S17/58 , G01S17/86 , G01S17/89 , G06T3/4038 , G06T7/10 , G06T7/521 , G06T7/55 , G06T7/60 , G06T7/70
Abstract: The present disclosure relates to a reality capture device for generating a digital three-dimensional representation of an environment, particularly for surveying and/or for detecting an object within an infrastructure. One aspect relates to a mobile reality capture device configured to be carried and moved by a mobile carrier, particularly a person or a robot or a vehicle, and to be moved during a measuring process for generating a digital representation of an environment. The mobile reality capture device has a localization unit, particularly comprising an inertial measurement unit (IMU), wherein the localization unit is configured for generating localization data for determining a trajectory of the mobile reality capture device.
-
公开(公告)号:US20210254308A1
公开(公告)日:2021-08-19
申请号:US17177786
申请日:2021-02-17
Inventor: Magnus THIBBLIN , Tommi Juhani KAUPPINEN , Burkhard BÖCKEM , Matthias WIESER , Roman STEFFEN , Pascal GOHL
Abstract: A construction machine comprising a chassis, a steering, and a powertrain for driving the construction machine by the chassis, an earth-moving tool for working a terrain, and a measuring system having a first measuring unit configured for generating first measuring data in a first detection range and comprising at least a first camera and a first LiDAR scanner configured for rotating a first measuring beam around a first axis and around a second axis non-parallel to the first axis with a rotating speed of at least 0.5 Hz with respect to each axis, an interface connecting the first measuring unit to a computer configured for, based on the first measuring data, at least one of generating a three-dimensional model of the terrain within the first detection range, identifying an obstacle or a person within the first detection range, and controlling the steering, the powertrain, and/or the earth-moving tool.
-
公开(公告)号:US20200209394A1
公开(公告)日:2020-07-02
申请号:US16348842
申请日:2016-11-10
Applicant: LEICA GEOSYSTEMS AG
Inventor: Simon MARK , Klaus BEREUTER , Benjamin MÜLLER , Roman STEFFEN , Burkhard BÖCKEM , Jürgen DOLD , Jochen SCHEJA , Lukas HEINZLE , Charles Leopold Elisabeth DUMOULIN
Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
-
公开(公告)号:US20250093466A1
公开(公告)日:2025-03-20
申请号:US18963346
申请日:2024-11-27
Applicant: LEICA GEOSYSTEMS AG
Inventor: Jürgen DOLD , Burkhard BÖCKEM , Roman STEFFEN , Lukas HEINZLE , Ralph Patrick HARTI , Hendrik DESCHOUT , Roland GRAF , Mattheus Henricus Maria MICHELS , Michael DIETSCHI , Adam BAIJRIC , Andrea BONFANTI , Kristian Walker MORIN , Simon MARK , Klaus BEREUTER , Markus RIBI , Michele PORTENTOSO , Matthias WIESER
IPC: G01S7/48 , G01S7/481 , G01S7/51 , G01S17/42 , G01S17/58 , G01S17/86 , G01S17/89 , G06T3/4038 , G06T7/10 , G06T7/521 , G06T7/55 , G06T7/60 , G06T7/70
Abstract: The present disclosure relates to a reality capture device for generating a digital three-dimensional representation of an environment, particularly for surveying and/or for detecting an object within an infrastructure. One aspect relates to a mobile reality capture device configured to be carried and moved by a mobile carrier, particularly a person or a robot or a vehicle, and to be moved during a measuring process for generating a digital representation of an environment. The mobile reality capture device has a localization unit, particularly comprising an inertial measurement unit (IMU), wherein the localization unit is configured for generating localization data for determining a trajectory of the mobile reality capture device.
-
公开(公告)号:US20230305158A1
公开(公告)日:2023-09-28
申请号:US18201670
申请日:2023-05-24
Applicant: LEICA GEOSYSTEMS AG
Inventor: Simon MARK , Klaus BEREUTER , Benjamin MÜLLER , Roman STEFFEN , Burkhard BÖCKEM , Jürgen DOLD , Jochen SCHEJA , Lukas HEINZLE , Charles Leopold Elisabeth DUMOULIN
CPC classification number: G01S17/89 , G01S7/4813 , G01S7/4817 , G01S7/4972 , G01S17/42 , G01B11/00
Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
-
公开(公告)号:US20230296777A1
公开(公告)日:2023-09-21
申请号:US18201664
申请日:2023-05-24
Applicant: LEICA GEOSYSTEMS AG
Inventor: Simon MARK , Klaus BEREUTER , Benjamin MÜLLER , Roman STEFFEN , Burkhard BÖCKEM , Jürgen DOLD , Jochen SCHEJA , Lukas HEINZLE , Charles Leopold Elisabeth DUMOULIN
CPC classification number: G01S17/89 , G01S7/4813 , G01S7/4817 , G01S7/4972 , G01S17/42 , G01B11/00
Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
-
公开(公告)号:US20220414915A1
公开(公告)日:2022-12-29
申请号:US17827527
申请日:2022-05-27
Applicant: LEICA GEOSYSTEMS AG
Inventor: Rainer WOHLGENANNT , Lukas HEINZLE , Garance BRUNEAU , Ralph HARTI , Roland GRAF , Roman STEFFEN , Simon MARK
IPC: G06T7/70 , H04N5/225 , H04N5/247 , H04N5/232 , G01S7/481 , G01S17/894 , G01S7/4865 , G02B13/06 , G03B17/56
Abstract: A reality capture device configured to perform a measuring process for generating a digital representation of an environment comprising a body defining a first axis, and an imaging unit with one or more 2D cameras configured to provide 2D image data of the environment. The device comprises a ToF camera arrangement configured for capturing 3D point-cloud data of the environment and comprising at least two time-of-flight cameras, wherein each time-of-flight camera comprises a sensor array and one or more laser emitters, the sensor array of each of the time-of-flight cameras having an optical axis and being configured to receive reflections of light pulses emitted by the one or more laser emitters of the respective time-of-flight camera, the time-of-flight cameras being arranged around the first axis so that each sensor array has one or two other sensor arrays as a neighbouring sensor array.
-
-
-
-
-
-
-
-
-