Abstract:
The present disclosure provides a quantum dot (QD) light emitting diode including: a first electrode; a second electrode facing the first electrode; a QD emitting material layer positioned between the first electrode and the second electrode and including a QD and an organic material; a hole auxiliary layer positioned between the first electrode and the QD emitting material layer; and an electron auxiliary layer positioned between the QD emitting material layer and the second electrode, wherein the organic material has a highest occupied molecular orbital (HOMO) level higher than a material of the hole auxiliary layer.
Abstract:
A quantum rod luminescent display device includes a first substrate having a plurality of pixel regions; a plurality of first electrodes alternately arranged with a plurality of second electrodes in each of the plurality of pixel regions; a plurality of quantum rod compound layers over the first electrodes and the second electrodes, respectively in each of the plurality of pixel regions, each of the quantum rod compound layers including a quantum rod having a core, a shell surrounding the core, and an electron acceptor; a second substrate facing the first substrate; and a backlight unit at an outer surface of the first substrate. The electron acceptor is attached to or adjacent to the quantum rod.
Abstract:
A quantum light emitting diode comprises a first electrode; a second electrode facing the first electrode; a light-amount enhancing layer between the first and second electrodes and having a structure guiding emitted light toward an emitting side; and an emitting material layer between the light-amount enhancing layer and the second electrode and including a quantum particle at the structure of the light-amount enhancing layer.
Abstract:
Embodiments relate to a quantum rod composition, a quantum rod film, a display device with a quantum rod film, and a method of forming a quantum rod film. The quantum rod film includes a plurality of quantum rods and a polymer with a dipole side chain. Responsive to an external electric field, the major axis of the quantum rods and an axis of the dipole side chain arranges in the same direction. The display device includes a plurality of pixel and common electrodes for generating an electric field, and a backlight unit positioned under a first substrate. Responsive to receiving light from the backlight unit, the quantum rod film emits light polarized in a direction parallel to the major axis of the quantum rods.
Abstract:
Compounds, and polymers thereof, useful dopants for light emitting diodes and light emitting display devices are disclosed. The compounds have the following structure Formula 1: wherein R1, R2, R3, R4, L1, L2, L3, L4, a, b, c and d are as defined herein. Light emitting diodes including compounds of Formula 1 (and polymers thereof, i.e., compounds of Formula 3), light emitting devices including the same as well as methods associated with preparation and use of such compounds, polymers and devices are also provided.
Abstract:
A quantum dot, a quantum dot light emitting diode and a quantum dot display device are discussed. The quantum dot includes a first core including a first semiconductor material, a first shell positioned at an outer side of the first core and including a second semiconductor material, and a second core positioned between the first core and the first shell and including one of the first and second semiconductor materials and a doping metal.
Abstract:
A quantum dot includes a seed and a core enclosing the seed. The core is grown from the seed to improve size uniformity of the core. The seed includes a first compound without Cd. The first compound may be GaP. The core may include a second compound including elements from group XIII and group XV. The second compound may be InP. The quantum dot may also include a first shell of a third compound enclosing the core. The third compound may be ZnSe or ZnS. The quantum dot may also include a second shell of a fourth compound enclosing the first shell. The fourth compound may be ZnS when the third compound is ZnSe. Embodiments also relate to a quantum dot including first to third elements selected from XIII group elements and XV group elements and fourth to sixth elements selected from XII group elements and XVI group elements.
Abstract:
A quantum rod panel includes a first substrate and a second substrate facing each other, a pixel electrode and a common electrode over the first substrate and spaced apart from each other, and a quantum rod layer between the pixel electrode and the common electrode and including quantum rods and metal particles.
Abstract:
A quantum rod, a synthesis method of the quantum rod and a quantum rod display device are discussed. The quantum rod according to an embodiment includes a core, a first shell covering the core, and a second shell covering a side of the first shell. In the quantum rod, a first thickness of the first shell is greater than a second thickness of the second shell, and a first length of the first shell is smaller than a second length of the second shell.
Abstract:
A quantum rod luminescent display device includes a first substrate having a plurality of pixel regions; a plurality of first electrodes alternately arranged with a plurality of second electrodes in each of the plurality of pixel regions; a plurality of quantum rod compound layers over the first electrodes and the second electrodes, respectively in each of the plurality of pixel regions, each of the quantum rod compound layers including a quantum rod having a core, a shell surrounding the core, and an electron acceptor; a second substrate facing the first substrate; and a backlight unit at an outer surface of the first substrate. The electron acceptor is attached to or adjacent to the quantum rod.