Abstract:
A stereoscopic display device including a barrier panel is provided. When a viewing distance of a viewer is out of the proper range, the stereoscopic display device may shift the blocking regions and the transmitting regions of the barrier panel. The stereoscopic display device may maintain the ratio of channels located within a barrier blocking region and a barrier transmitting region of the barrier panel by using the channels disposed within trigger regions of the barrier panel. Thus, the stereoscopic display device may provide a stereoscopic image of good quality to the viewer located at a region being out of the proper range.
Abstract:
A stereoscopic display device may include a light control panel on a display panel, so that light emitted from the display panel may emit in a direction different from adjacent frame and the visibility of the stereoscopic image which is provided to user may be increased without the deterioration of the resolution.
Abstract:
A stereoscopic display device including a barrier panel is provided. When a viewing distance of a viewer is out of the proper range, the stereoscopic display device may shift the blocking regions and the transmitting regions of the barrier panel. The stereoscopic display device may maintain the ratio of channels located within a barrier blocking region and a barrier transmitting region of the barrier panel by using the channels disposed within trigger regions of the barrier panel. Thus, the stereoscopic display device may provide a stereoscopic image of good quality to the viewer located at a region being out of the proper range.
Abstract:
A display device includes: a display panel for displaying an image toward a plurality of viewing zones; a light guide plate under the display panel; a lens array disposed along a side of the light guide plate, the lens array including a plurality of lenses; a light source part including a plurality of line light sources each emitting a ray toward the lens array; a position sensing unit for obtaining a position information about the plurality of viewing zones; and a control unit for controlling the display panel, the light source part and the position sensing unit according to the position information.
Abstract:
Disclosed is a light emitting diode display device comprising a light emitting diode over a substrate, and an optical element provided with liquid crystal molecule randomly distributed therein and configured to change a path of light emitted from the light emitting diode.
Abstract:
A display device includes a display panel including a plurality of sub-pixel areas for respectively outputting light for displaying an image and a light travel-direction changing layer disposed on the display panel for diversifying and spreading travel directions of light emitted from each of the plurality of sub-pixel areas. The light travel-direction changing layer includes a plurality of refractive patterns respectively corresponding to the plurality of sub-pixel areas and arranged in a matrix form, and a light-scattering layer disposed around each of the plurality of refractive patterns and having a refractive index different from a refractive index of each of the plurality of refractive patterns. Due to the light travel-direction changing layer, light from each sub-pixel area is incident into each refractive pattern, is refracted at a boundary between each refractive pattern and the light-scattering layer, and is scattered in the light-scattering layer. Thus, the light emits out of the display device in the diversified and spread travel directions.
Abstract:
A 3D display apparatus including lenticular lenses is provided. The lenticular lenses may be disposed between a display panel and a viewing angle control film. A direction in which the lenticular lenses extend may be inclined with a direction in which pixel regions of the display panel are arranged. The display panel may include light-blocking patterns overlapping with a boundary of the lenticular lenses. Thus, in the 3D display apparatus, the quality of the image provided to the user may be improved.
Abstract:
A 3D display apparatus is provided. The 3D display apparatus can include lenticular lenses between a display panel and a viewing angle control film. The display panel can have a curvature. The viewing angle control film can include a plurality of light-blocking patterns between a first control substrate and a second control substrate. A pitch and a height of the plurality of light-blocking patterns can be determined by a curvature radius of the lenticular lenses, a distance between the viewing angle control film and a set viewing region, and a length of the display panel corresponding to the set viewing region. Thus, in the 3D display apparatus, the quality of 3D images provided to a user can be improved.
Abstract:
The present disclosure relates to an autostereoscopic three-dimensional (or, 3D) display using a switchable barrier. The present disclosure provides an autostereoscopic 3D display comprising: a display panel including a plurality of pixels arrayed in a matrix manner; and a switchable barrier disposed on a front surface of the display panel, wherein the switchable barrier includes: a lower substrate having first lower electrodes, a first passivation layer covering the first lower electrodes, second lower electrodes on the first passivation layer, a second passivation layer covering the second lower electrodes, and third lower electrodes on the second passivation layer; an upper substrate having an upper electrode facing with the first lower electrodes, the second lower electrodes and the third lower electrodes; and a liquid crystal layer disposed between the lower substrate and the upper substrate.
Abstract:
A polarizing control film for two-dimensional (2D) display mode/three-dimensional (3D) display mode conversion in a stereoscopic display device, can include a film substrate, a plurality of first and second electrodes alternately arranged on the film substrate, and a liquid crystal layer disposed on the film substrate having the first and second electrodes, the liquid crystal layer being filled with nano liquid crystals exhibiting optical isotropy when no voltages are applied to the first and second electrodes and optical anisotropy when voltages are applied to the first and second electrodes.