Abstract:
Disclosed is a display apparatus in which a GIP circuit part is disposed in a panel part separate from a panel part including a pixel, such that decrease in a size of a transmissive area of the panel part including the pixel due to the GIP circuit part is minimized. Thus, a transmittance of the display apparatus embodied as a transparent display apparatus may be improved.
Abstract:
A light emitting display panel includes a driving transistor, and a storage capacitor including at least three electrodes to reduce a size of the driving transistor or the storage capacitor. The light emitting display panel comprises a light emitting element, the driving transistor connected to the light emitting element, and the storage capacitor connected to a gate and a first electrode of the driving transistor. The driving transistor includes a light shielding electrode used as the gate of the driving transistor, a buffer covering the light shielding electrode, an active portion provided on an upper surface of the buffer, forming the first electrode, a second electrode and a semiconductor portion of the driving transistor, a gate insulating layer covering the active portion, and a gate electrode provided on an upper surface of the gate insulating layer and connected to the light shielding electrode.
Abstract:
A display device according to an example includes a first power sharing line disposed to be parallel with a first direction, first and second pixels disposed along a second direction crossing the first direction with the first power sharing line interposed therebetween, and a second power sharing line disposed to be parallel with the first power sharing line with any one of the first and second pixels interposed therebetween.
Abstract:
Disclosed is a transparent micro-LED unit pixel circuit capable of driving red, green, and blue micro-LED elements with one driving transistor to increase an area size of a transmissive area, and a transparent micro-LED display device including the same. The transparent micro-LED unit pixel circuit includes first to third micro-LEDs emitting light based on a driving current; a driving transistor configured to control the driving current, wherein the driving transistor is disposed between and connected to an anode electrode of each of the first micro-LED, the second micro-LED, and the third micro-LED and a high-potential power line; a storage capacitor disposed between and connected to a gate electrode and a source electrode of the driving transistor; and a first transistor configured to apply a data voltage to the gate electrode of the driving transistor.
Abstract:
A thin film transistor substrate includes: pluralities of gate lines and data lines arranged to define a plurality of pixel regions, and a plurality of thin film transistors formed on the pixel regions in such a manner as to include first and second thin film transistors connected to the same gate line and the pixel regions adjacent to each other. Each of the first and second thin film transistors includes: a gate electrode connected to the gate line; a semiconductor layer formed on the gate line in an octagon shape; a source electrode connected to the data line; and a drain electrode formed in an opposite shape to the source electrode.
Abstract:
A light emitting display device comprises a subpixel having a light emitting element disposed in a light emission area on a substrate and a circuit area in which a circuit for driving the light emitting element is disposed, a gate line disposed in the circuit area in a first direction, and at least one power line disposed in a second direction crossing the first direction, the at least one power line including a first power bridge line and a second power bridge line which are spaced apart from each other in the first direction.
Abstract:
A display device with a reduced bezel area is disclosed. In one embodiment, the display device includes a cut-out region on which an electronic component is to be placed, and a display panel for displaying an image. The cut-out region extends from a first side toward a second side of the display device. The display panel includes a first display area between a third side of the display device and the cut-out region, a second display area between a fourth side of the display device and the cut-out region, and a third display area between the third side and the fourth side of the display device, the third display area disposed below the first display area, the second display area, and the cut-out region toward the second side of the display device.
Abstract:
A thin film transistor substrate and a liquid crystal display device are disclosed. The thin film transistor substrate comprises gate lines arranged on a substrate in a first direction and sub gate lines connected with the gate lines; data lines arranged on the substrate in a second direction to define a pixel including a first pixel and a second pixel, together with the gate lines; a semiconductor layer formed overlapping with each of the gate lines, the sub gate lines and the data lines and connected with the date lines; and a pixel electrode connected with the semiconductor layer. An aperture ratio may be improved at high resolution.
Abstract:
Disclosed is a liquid crystal display (LCD) device capable of enhancing an aperture ratio and a transmittance ratio. The LCD device includes a first substrate and a second substrate; a plurality of gate lines formed on the first substrate, each gate line having a first region and a second region with the width less than that of the first region; a plurality of data lines disposed so as to be perpendicular to the gate lines to define a plurality of pixel regions; a thin film transistor (TFT) formed on the first region of the gate line; a common electrode and a pixel electrode formed on the first substrate, and forming an electric field; a black matrix and a color filter layer formed on the second substrate; and a liquid crystal (LC) layer formed between the first substrate and the second substrate, wherein the first regions and the second regions of the gate lines are alternately disposed in an extending direction of the gate lines and in an extending direction of the data lines, and wherein two TFTs are formed on the first region of the gate line corresponding to the pixel region, two TFTS being respectively connected to pixel electrodes of two pixel regions adjacent to each other based on the gate line.
Abstract:
An array substrate for a fringe field switching mode LCD device includes a pixel electrode having a plate shape in a pixel region; and a common electrode including a plurality of bar-type openings that correspond to the pixel electrode and long axes of which are inclined at a first angle in a clockwise direction or counterclockwise direction with respect to a normal line perpendicular to the gate line, wherein a data line is formed in a zigzag shape, wherein two adjacent data lines among three adjacent data lines are disposed in parallel with each other and the other data line is linearly symmetrical with respect to the two adjacent data lines, and wherein the long axis of each of the plurality of bar-type openings is disposed in parallel with one of data lines that define the pixel region and are located at both sides of the pixel region.