Abstract:
The present disclosure is applicable to the technical field related to a secondary battery, and relates to, for example, a separator structure for the secondary battery, a method for preparing the same, and the secondary battery using the same. A separator structure disposed inside a secondary battery includes a porous support body including a first face and a second face, and a cellulose nano fiber subjected to an ionic surface treatment located on at least one of the first face and the second face of the support body.
Abstract:
The method for producing a nanocellulose support comprises coating a container with surface-treated nanocellulose solution, forming a nanocellulose film by drying the coated nanocellulose solution, and modifying the surface properties of the nanocellulose film by means of electron beam irradiation. According to an embodiment, the production of nanocellulose supports using the drying method allows substrates of various shapes to be coated and has simple processes, thus allowing mass production and production of over-sized supports.
Abstract:
A colorless composite material according to an embodiment includes glass fibers, and inorganic-organic hybrid resin having inorganic bonds and organic bonds, wherein the inorganic bonds are M-O-M bonds and M denotes a metallic element, wherein the metallic element is one of Ti, Zr and Al.
Abstract:
A method according to the present disclosure may includes preparing a urea solution by dissolving urea in distilled water, adding phosphoric acid to the urea solution, adding pulp to the solution in which urea and phosphoric acid are dissolved, heating the solution such that the urea and the phosphoric acid each react with the pulp and preparing nanocellulose by washing the pulp which is completely reacted, and then grinding the pulp, in which a weight of the phosphoric acid is 10 to 50% based on a weight of the pulp.
Abstract:
A method for manufacturing a transparent composite material including preparing a film coated with a transparent resin, unidirectionally aligning glass fiber filaments and manufacturing a glass fiber plate by embedding the unidirectionally aligned glass fiber filaments in the transparent resin, wherein the transparent resin includes Si—O—Si bond and one of methyl, ethyl and phenyl.