Abstract:
A depth information extracting device according to one embodiment of the present invention comprises a projecting unit that discontinuously projects IR (InfraRed) light of a predetermined pattern; a camera unit that captures images; and a signal processing unit that performs depth information extraction and RGB image information extraction by using the images captured by the camera unit, wherein the signal processing unit extracts depth information by using an image received during a first time interval and extracts RGB image information by using an image received during a second time interval.
Abstract:
A device for extracting depth information according to one embodiment of the present invention comprises: a light outputting unit for outputting IR (InfraRed) light; a light inputting unit for inputting light reflected from an object after outputting from the light outputting unit; a light adjusting unit for adjusting the angle of the light so as to radiate the light into a first area including the object, and then for adjusting the angle of the light so as to radiate the light into a second area; and a controlling unit for estimating the motion of the object by using at least one of the lights between the light inputted to the first area and the light inputted to the second area.
Abstract:
Disclosed are a luminous flux control member, which includes an incident surface onto which a light is incident, a reflective surface reflecting the incident light, and a light exit surface outputting the reflected light according to at least two orientation angles based on one direction perpendicular to a central axis connecting a center of the incident surface with a center of the reflective surface, a light emitting device and a display device having the same. The uniformity in the brightness of the display device is ensured and the display device is realized in small size
Abstract:
A device for extracting depth information according to one embodiment of the present invention comprises: a light outputting unit for outputting IR (InfraRed) light; a light inputting unit for inputting light reflected from an object after outputting from the light outputting unit; a light adjusting unit for adjusting the angle of the light so as to radiate the light into a first area including the object, and then for adjusting the angle of the light so as to radiate the light into a second area; and a controlling unit for estimating the motion of the object by using at least one of the lights between the light inputted to the first area and the light inputted to the second area.
Abstract:
A camera device according to one embodiment of the present invention comprises: a light output unit that outputs IR (infrared) light; a light input unit including a plurality of pixels respectively having a first receiving unit and a second receiving unit, and having light that is reflected by an object and input therein after the light is output from the light output unit; and a calculating unit that calculates the distance to the object by using the difference in the amount of light input to the first receiving unit and the second receiving unit of the light input unit. The camera device further comprises a first lens and a second lens disposed between the light output unit and the object, wherein the first lens refracts the light output from the light output unit in a first direction, and the second lens refracts the light output from the light output unit in a second direction.
Abstract:
A member for controlling luminous flux according to an exemplary embodiment of the present invention includes an optical path changing unit embedded in a matrix and including scattering particles scattering incident light, and an optical direction adjustment unit including a coupling surface attached to the optical path changing unit to receive the light scattered from the optical path changing unit, and a refractive surface refracting the received light and emitting the refracted light, whereby an optical diffusion performance of the member for controlling luminous flux according to an exemplary embodiment of the present invention can enhance an optical diffusion performance.
Abstract:
A camera device according to an embodiment of the present invention includes a light output unit which generates an output light signal and emits the output light signal to an object, a light receiving unit which receives an input light signal which is reflected from the object and then input to the light receiving unit, a depth information generation unit which generates a depth map of the object using the input light signal input to the light receiving unit, and a control unit which controls the light output unit, the light receiving unit, and the depth information generation unit, wherein the light output unit includes a light source for generating the output light signal, and the control unit controls a current applied to the light source on the basis of information about the object.
Abstract:
A camera module according to an embodiment of the present invention comprises: a light emitting unit which includes a plurality of light emitting areas and drives at least one of the plurality of light emitting areas according to a first control signal so as to output an optical signal; a light receiving unit for collecting the optical signal; a sensor unit which includes a plurality of light receiving areas corresponding to the plurality of light emitting areas, respectively, and drives at least one of the plurality of light receiving areas according to a second control signal to generate an image signal on the basis of the collected light signal; and a control unit which generates at least one of the first control signal and the second control signal on the basis of the image signal and controls at least one of the light emitting unit and the sensor unit on the basis of at least one of the first control signal and the second control signal.
Abstract:
A device for extracting depth information, according to one embodiment of the present invention, comprises: a light output unit for outputting infrared (IR) light; a light adjustment unit for adjusting an angle of the light outputted from the light output unit such that the light scans a first region including an object, and then adjusting the angle of the light such that the light scans a second region, which is a portion of the first region; a light input unit in which the light outputted from the light output unit and reflected from the object is inputted; and a control unit for extracting depth information of the second region by using the flight time taken up until the light outputted from the light output unit is inputted into the light input unit after being scanned to and reflected from the second region.
Abstract:
Disclosed is a display device. The display device includes a light source, a light guide part to receive a light emitted from the light source, a light conversion member between the light source and the light guide part, and a spacer between the light source and the light conversion member.