Abstract:
A lighting device disclosed in an embodiment of the invention includes a substrate, a light emitting device disposed on the substrate, a reflective layer disposed on the substrate, a resin layer disposed on the reflective layer, and a light control member disposed on the resin layer, and the light control member includes a first substrate disposed on the resin layer, a second substrate disposed on the first substrate, and a first adhesive member disposed between the first and second substrates, and comprises a first air gap formed in a region of the region between the first and second substrates in which the first adhesive member is not arranged, and the number of the first air gap may be greater than or equal to a number of the light emitting device.
Abstract:
A heating device for a camera module comprises: a resistance heating film formed on a lens through which external light is introduced for generating heat by electric current; a power applying member for supplying the electric current to the resistance heating film; and a connecting member for electrically connecting the resistance heating film and the power applying member in close contact with each other.
Abstract:
Disclosed is a display device. The display device includes a light source, a light guide part to receive a light emitted from the light source, a light conversion member between the light source and the light guide part, and a spacer between the light source and the light conversion member.
Abstract:
A lighting device disclosed in an embodiment of the invention includes a substrate; a plurality of light emitting devices disposed on the substrate; a resin layer covering the plurality of light emitting devices on the substrate; and a first reflective member disposed on the resin layer, wherein the resin layer includes a first surface facing the plurality of light emitting devices, and a hole disposed between the first surface and the plurality of light emitting devices and the hole penetrates in the direction of the substrate from a lower surface of the first reflective member, and the hole and the light emitting device may overlap in a light emission direction of the light emitting device.
Abstract:
A lighting device disclosed in an embodiment of the invention includes a substrate; a plurality of light emitting devices on the substrate; a first reflective layer on the substrate; a resin layer on the first reflective layer; and a second reflective layer on the resin layer. The resin layer includes a first surface from which light emitted from the plurality of light emitting devices is emitted, and a second surface opposite to the first surface, wherein the first surface of the resin layer includes a first exit surface having a first curvature, and a second exit surface having a flat surface or a second curvature, wherein a maximum distance from the second surface to the first exit surface may be greater than a maximum distance from the second surface to the second exit surface.
Abstract:
A camera module comprises: a housing having a lens holder disposed outside thereof and a substrate unit disposed therein; a lens module disposed in the lens holder and including a first lens exposed to the outside; a heating element disposed on the lower surface of the lens; an image sensor mounted on the substrate unit so as to correspond to the lens module; and a connection unit for applying power to the lens module, wherein the connection unit comprises: a first connecting member electrically connected to the heating element so as to supply power; and a second connecting member extending from the first connecting member to an inside of the housing and electrically connecting the first connecting member and the substrate unit.
Abstract:
One embodiment relates to a lens driving device and a camera module including same. The lens driving device according to the one embodiment can include: a base; a pin coupled to the base; and a housing including a lens group and moving in the optical axis direction along the pin. The housing can include, in one side thereof, a ball accommodation part and a plurality of balls arranged in the ball accommodation part. The pin is arranged in the ball accommodation part so as to be capable of guiding the housing while being in contact with the plurality of balls.
Abstract:
Disclosed are a luminous flux control member, which includes an incident surface onto which a light is incident, a reflective surface reflecting the incident light, and a light exit surface outputting the reflected light according to at least two orientation angles based on one direction perpendicular to a central axis connecting a center of the incident surface with a center of the reflective surface, a light emitting device and a display device having the same. The uniformity in the brightness of the display device is ensured and the display device is realized in small size
Abstract:
A lighting device disclosed in an embodiment of the invention includes a substrate; a plurality of light emitting devices disposed on the substrate; a resin layer covering the plurality of light emitting devices on the substrate; and a first reflective member disposed on the resin layer, wherein the resin layer includes a first surface facing the plurality of light emitting devices, and a hole disposed between the first surface and the plurality of light emitting devices and the hole penetrates in the direction of the substrate from a lower surface of the first reflective member, and the hole and the light emitting device may overlap in a light emission direction of the light emitting device.
Abstract:
A member for controlling luminous flux according to an exemplary embodiment of the present invention includes an optical path changing unit embedded in a matrix and including scattering particles scattering incident light, and an optical direction adjustment unit including a coupling surface attached to the optical path changing unit to receive the light scattered from the optical path changing unit, and a refractive surface refracting the received light and emitting the refracted light, whereby an optical diffusion performance of the member for controlling luminous flux according to an exemplary embodiment of the present invention can enhance an optical diffusion performance.