摘要:
An acoustic inkjet printhead utilizes a pulse width modulation to control droplet size or ejection velocity. An individual control pulse controls the duration and the time a RF signal is applied to each transducer. To modify the RF signal of each transducer, the pulse width of each control signal can be modified according to a predetermined correction data. The rising edge of the control data is delayed according to the correction data while the falling edge is kept the same.
摘要:
A fabricated structure for use with an associated marking device is provided. In one form, the fabricated structure includes a self-lifting spring finger having a nib for marking.
摘要:
A fabricated structure for use with an associated marking device is provided. In one form, the fabricated structure includes a self-lifting spring finger having a nib for marking.
摘要:
Low acoustic solid wave attenuation structures are formed with an electroformed nickel mold, and are incorporated within acoustic ink emitters, between the focusing lens and surface of an ink layer. The structures have characteristics of low attenuation of acoustic waves to increase the efficiency of acoustic wave transmission within the acoustic ink emitter. Using the described structures, acoustic ink printers can accurately emit materials having high viscosity, including hot melt inks.
摘要:
Methods for testing proper operation of drop ejection units in a multi-ejector system are provided to determine whether the drop ejectors have been properly filled and/or the ejectors are emitting fully formed droplets. The methods include testing the ejectors prior to drop ejection. In this method, a priming system is used wherein fluid received by the priming system is ejected onto a test substrate to allow a scanner to determine the existence of the fluids at selected locations. The selected locations are correlated to the drop ejection units to determine which ejection units do not have biofluid or sufficient biofluid. A further method allows for ejection prior to printing, on a test substrate wherein testing for both the fullness of the ejector units as well as proper emission of the ejectors of droplets may be tested. The ejectors after being primed, eject the biofluids which are then scanned and correlated to each individual ejector. A further method provided is a laser scattering method wherein a laser beam is interposed between the drop emission path of the ejectors. Laser detection then determines whether a correlated drop ejector is properly emitting droplets.
摘要:
A biofluid drop ejection unit for ejecting biofluid drops. A biofluid drop ejection mechanism of such a unit includes a transducer, which generates energy used to emit the biofluid drop. Further provided is a reagent cartridge or biofluid containment area which holds the biofluid. The reagent cartridge or biofluid containment area is configured to hold low volumes of biofluid and to avoid contamination of the biofluid. The reagent cartridge or biofluid containment area is in operational connection with the drop ejection mechanism such that upon operation of the drop ejection mechanism, biofluid drops are emitted. The biofluid drop ejection mechanism is a high efficiency device, and may be configured as two separate pieces or as a single disposable unit.
摘要:
The free ink surface levels of acoustic ink printers are controlled by cap structures that have substantially non-retroreflective aperture configurations. The non-retroreflective configurations of the apertures of these cap structures cause diffusive scattering or directional deflection of the reflected surface ripple waves, thereby significantly reducing the time that is required for the oscillatory perturbations, which are caused by reflection of the surface ripple waves that are generated during the droplet ejection process, to dissipate to a negligibly low amplitude in the critical local areas of the ejection sites. This, in turn, increases the droplet ejection rates at which printers having such cap structures can be operated asynchronously.
摘要:
In accordance with the present invention, an acoustic ink printer comprises a pool of liquid ink having a free surface in intimate contact with the inner face of a perforated membrane. The printer addresses all pixel positions within its image field via substantially uniform, relatively large diameter apertures which extend through the membrane on centers that are aligned with respective ones of the pixel positions. In operation, one or more focused acoustic beams selectively eject individual droplets of ink from the ink menisci that extend across the apertures. Accordingly, the membrane is positioned and the bias pressure that is applied to the ink is selected so that the menisci essentially remain within the focal plane of such beam or beams.
摘要:
A level control mechanism is provided for a biofluid drop ejection device which ejects biofluid drops in small volumes. The biofluid drop device includes a drop ejection mechanism having a transducer which generates energy used to emit the biofluid drops. A reagent cartridge or biofluid holding area holds a biofluid, isolated from the drop ejection mechanism to avoid contamination between the biofluid drop ejection mechanism and the reagent cartridge. The reagent cartridge is connected to the drop ejection mechanism such that upon operation of the mechanism, the biofluid is emitted in controlled biofluid drops. A level sensor is positioned to sense a height of the biofluid within the cartridge. Upon sensing the height of the biofluid below a certain level, an adjustment is made to the height by providing at least one of additional biofluid to the cartridge, and raising the level of the entire reagent cartridge.
摘要:
A method and mechanism for ensuring quality control in printed biological assays is provided. A multi-ejector system having a plurality of individual drop ejectors is loaded with a variety of biofluids. Biofluids include at least a carrier fluid, a biological material to be used in the testing, and markers, such as fluorescent dyes. Data regarding the biofluid loaded in each of the drop ejectors is stored along with an expected signature output of the biofluid. Particularly, the signature output represents signals from individual ones of the fluorescent markers included within the biofluid. Once a biological assay consisting of the biofluid drops has been printed, a scanner capable of detecting the markers scans the biological assay and obtains signature output signals for each of the drops of the biological assay. A comparing operation is undertaken to compare the obtained signature output through the scanning operation, with the expected signature output signals for the biofluid loaded in the corresponding drop ejector. The biological material itself may also be tagged with a marker to ensure its inclusion in the biofluid. By the comparing operation, it is possible to verify the biofluids were loaded in the proper drop ejector, including the proper biological material, and that the drop ejectors are functioning properly.