摘要:
Methods for making a loaded catheter assembly for delivering a self-expanding stent where the self-expanding stent is carried in a compressed state and the compressed stent has an inside diameter smaller than the outside diameter of the catheter distal tip. The methods can utilize catheter sub-assemblies lacking already attached tips or having partially formed distal tips. A stent can be proximally and co-axially slid over the distal end of the catheter shaft and constrained by a retractable sheath disposed co-axially about the compressed stent. The catheter distal tip can be added or more fully formed after the loading of the stent. Some catheters include a preformed distal conical tip held in position by a heat-shrink film. Other catheters have an elastomeric distal tip waist for slipping over and engaging an outward projection on the catheter shaft distal region. Some catheters are adapted to engage catheter shaft distal threaded regions.
摘要:
Methods for making a loaded catheter assembly for delivering a self-expanding stent where the self-expanding stent is carried in a compressed state and the compressed stent has an inside diameter smaller than the outside diameter of the catheter distal tip. The methods can utilize catheter sub-assemblies lacking already attached tips or having partially formed distal tips. A stent can be proximally and co-axially slid over the distal end of the catheter shaft and constrained by a retractable sheath disposed co-axially about the compressed stent. The catheter distal tip can be added or more fully formed after the loading of the stent. Some catheters include a preformed distal conical tip held in position by a heat-shrink film. Other catheters have an elastomeric distal tip waist for slipping over and engaging an outward projection on the catheter shaft distal region. Some catheters are adapted to engage catheter shaft distal threaded regions.
摘要:
An electrode is provided at a distal end of a catheter and dimensioned for deployment within a renal artery. A deformable cover of the electrode incorporates a force-activatable conduction apparatus. The cover is configured to conduct electrical energy only through a region or regions of the cover subject to deformation due to contact with a wall of the target vessel. The electrical energy is sufficient to ablate perivascular renal nerves proximate the deformed region or regions of the electrode cover. The cover is configured to prevent conduction of electrical energy through the cover in the absence of a deformation force applied to the cover.
摘要:
A method and apparatus for forming a covered endoprosthesis employs a conformed polymeric coating about an expandable stent. The expandable stent has an open tubular construction. A first polymeric liner is positioned about an inner surface of the tubular stent and a second polymeric liner is positioned about an outer surface of the tubular stent. The first and second polymeric liners are conformed to the tubular stent and laminated together through the open construction of the stent at a location coextensive with the inner surface of the tubular stent.
摘要:
The present invention provides a dilatation catheter which includes a balloon having at least one layer of a thermoplastic material consisting essentially of a random copolymer made from dimethyl terephthalate dimethyl isophthalate and ethylene glycol. These balloons are particular suited for use on dilatation catheters used for percutaneous transluminal coronary angioplasty.
摘要:
An elongated flexible medical device is inserted into a patient's body via a natural orifice, and advanced through the natural orifice to a location proximate innervated tissue that influences renal sympathetic nerve activity. The medical device can be advanced into a body organ and to a location within the organ proximate the innervated tissue. The organ may comprise an organ of the gastrointestinal tract or urinary tract. The medical device may be advanced through and beyond an access hole in a wall of the organ, and situated at a location proximate the innervated tissue. One or both of imaging and ablation energy is delivered from a distal end of the medical device to the innervated tissue. Innervated renal tissue can be ablated using various forms of energy, including RF energy, ultrasound energy, optical energy, and thermal energy.
摘要:
Methods, apparatus, and systems for altering the configuration of a heart valve. Methods, apparatus, and systems include the use of a cord delivered into the heart by a delivery catheter that can be manipulated by a receiving catheter so as to improve the heart valve function.
摘要:
The present invention provides an apparatus and method for manufacturing polymeric thin-walled tubular members, which are well-suited for use as vascular grafts. The apparatus of the present invention enables extrusion of a tubular member having an extremely thin wall thickness so as to facilitate passage through tortuous vascular passageways. The apparatus achieves uniform wall thickness in a tubular member by establishing and maintaining axial alignment of a ram having a concentrically disposed guide rod therein with a die supported in concentric relation to the guide rod.
摘要:
The present invention relates to a support structure/membrane composite device which includes a support structure, such as a radially expandable stent, a porous non-textile polymeric membrane adjacent to said stent and a thermoplastic anchor means attaching said stent to said porous non-textile polymeric membrane. The porous non-textile polymeric membrane is preferably made from expandable fluoropolymer materials. The anchoring means is a thermoplastic material which is dissolvable at the interface between the support structure and membrane by a suitable solvent which wets the membrane surface and deposits the thermoplastic material within the pores of the membrane. Methods of preparing the device are also disclosed.
摘要:
A composite intraluminal device is deployable within a body vessel. The composite device includes an elongate radially expandable tubular stent having an interior luminal surface and an opposed exterior surface extending along a longitudinal stent axis. A stent cover is formed of unsintered ePTFE which is expandable. The stent cover is positioned about the stent so as to permit expansion of the cover upon the radial expansion of the stent.