摘要:
Some embodiments of the present invention provide solid oxide cells and components thereof having a metal oxide electrolyte that exhibits enhanced ionic conductivity. Certain of those embodiments have two materials, at least one of which is a metal oxide, disposed so that at least some interfaces between the domains of the materials orient in a direction substantially parallel to the desired ionic conductivity.
摘要:
The invention relates to methods for creating metal oxide coatings on one or more surfaces employing a magnetic field, and articles containing those coatings. Such methods involve contacting the surfaces to be treated with a metal compound, and converting the metal compound to metal oxide for example by heating the surfaces to the desired temperature in the presence of a magnetic field. The magnetic field dramatically improves, in some embodiments, the characteristics of the metal oxide coating.
摘要:
The present invention provides solid oxide fuel cells, solid oxide electrolyzer cells, solid oxide sensors, components of any of the foregoing, and methods of making and using the same. In some embodiments, a solid oxide fuel cell comprises an air electrode (or cathode), a fuel electrode (or anode), an electrolyte interposed between the air electrode and the fuel electrode, and at least one electrode-electrolyte transition layer. Other embodiments provide novel methods of producing nano-scale films and/or surface modifications comprising one or more metal oxides to form ultra-thin (yet fully-dense) electrolyte layers and electrode coatings. Such layers and coatings may provide greater ionic conductivity and increased operating efficiency, which may lead to lower manufacturing costs, less-expensive materials, lower operating temperatures, smaller-sized fuel cells, electrolyzer cells, and sensors, and a greater number of applications.