摘要:
The present invention provides solid oxide fuel cells, solid oxide electrolyzer cells, solid oxide sensors, components of any of the foregoing, and methods of making and using the same. In some embodiments, a solid oxide fuel cell comprises an air electrode (or cathode), a fuel electrode (or anode), an electrolyte interposed between the air electrode and the fuel electrode, and at least one electrode-electrolyte transition layer. Other embodiments provide novel methods of producing nano-scale films and/or surface modifications comprising one or more metal oxides to form ultra-thin (yet fully-dense) electrolyte layers and electrode coatings. Such layers and coatings may provide greater ionic conductivity and increased operating efficiency, which may lead to lower manufacturing costs, less-expensive materials, lower operating temperatures, smaller-sized fuel cells, electrolyzer cells, and sensors, and a greater number of applications.
摘要:
In one embodiment, the invention relates to a method for creating a diffused thin film surface treatments on one or more interior surfaces of closed or partially closed fluid transport or processing systems providing improved surface prophylaxis against fouling. The method involves contacting the interior surfaces to be treated with a metal compound composition, and converting the metal compound composition to metal oxide for example by heating the surfaces to the desired temperature after all or a part of the system has been assembled. Embodiments of the present invention can be performed in situ on existing fluid processing or transport systems, which minimizes the disruption to the surface treatment created by welds, joints, flanges, and damage caused by or during the system assembly process.
摘要:
In one embodiment, the invention relates to a method for creating a diffused thin film surface treatments on one or more interior surfaces of closed or partially closed fluid transport or processing systems providing improved surface prophylaxis against fouling. The method involves contacting the interior surfaces to be treated with a metal compound composition, and converting the metal compound composition to metal oxide for example by heating the surfaces to the desired temperature after all or a part of the system has been assembled. Embodiments of the present invention can be performed in situ on existing fluid processing or transport systems, which minimizes the disruption to the surface treatment created by welds, joints, flanges, and damage caused by or during the system assembly process.
摘要:
The present invention provides solid oxide fuel cells, solid oxide electrolyzer cells, solid oxide sensors, components of any of the foregoing, and methods of making and using the same. In some embodiments, a solid oxide fuel cell comprises an air electrode (or cathode), a fuel electrode (or anode), an electrolyte interposed between the air electrode and the fuel electrode, and at least one electrode-electrolyte transition layer. Other embodiments provide novel methods of producing nano-scale films and/or surface modifications comprising one or more metal oxides to form ultra-thin (yet fully-dense) electrolyte layers and electrode coatings. Such layers and coatings may provide greater ionic conductivity and increased operating efficiency, which may lead to lower manufacturing costs, less-expensive materials, lower operating temperatures, smaller-sized fuel cells, electrolyzer cells, and sensors, and a greater number of applications.
摘要:
The invention relates to method for forming at least one metal oxide on one or more interior surfaces of closed or partially closed fluid transport or processing systems. The method involves applying at least one metal compound to the interior surfaces to be treated using, for example, one or more traveling applicators, commonly known as “pigs.” Then, the at least one metal compound is converted to at least one metal oxide, such as by heating the surfaces. In some embodiments, the at least one metal oxide provides a protective metal oxide coating adhered to those surfaces. Embodiments of the present invention can be performed in situ on existing fluid processing or transport systems.