Abstract:
Embodiments of the disclosure include an electrochemical sensor comprising a housing defining an interior space; a sensing electrode; a counter electrode; and a separator retaining an electrolyte, wherein the electrolyte provides an ionically conductive pathway between each of the sensing electrode and the counter electrode within the housing, wherein the electrodes are orientated in a common plane, the separator contacts each of the electrodes, and the housing comprises at least one breather slot located between the interior space and the separator.
Abstract:
Embodiments of the disclosure include an electrochemical sensor comprising a housing defining an interior space; a sensing electrode; a counter electrode; and an electrical contact; wherein at least one of the sensing electrode or the counter electrode comprises a contact portion, wherein the contact portion is biased into contact with and electrically coupled to the electrical contact, and wherein a compression on the contact portion is different from a compression on the remaining body of the electrode.
Abstract:
The present invention provides solid oxide fuel cells, solid oxide electrolyzer cells, solid oxide sensors, components of any of the foregoing, and methods of making and using the same. In some embodiments, a solid oxide fuel cell comprises an air electrode (or cathode), a fuel electrode (or anode), an electrolyte interposed between the air electrode and the fuel electrode, and at least one electrode-electrolyte transition layer. Other embodiments provide novel methods of producing nano-scale films and/or surface modifications comprising one or more metal oxides to form ultra-thin (yet fully-dense) electrolyte layers and electrode coatings. Such layers and coatings may provide greater ionic conductivity and increased operating efficiency, which may lead to lower manufacturing costs, less-expensive materials, lower operating temperatures, smaller-sized fuel cells, electrolyzer cells, and sensors, and a greater number of applications.
Abstract:
A multiple layer gel and method for forming a multiple layer gel are provided. The multiple layer gel includes an isolation layer and an electrolyte layer. The isolation layer provides a molecular weight screen, to prevent proteins or other molecules from contacting a reference cell covered by the isolation layer. The electrolyte layer covers the isolation layer, and provides a source of ions that place the reference cell in ionic and/or electrical contact with a fluid sample. The multiple layer gel can be used to maintain a reliable reference voltage from an associated reference cell while an electrical potential or other electrical characteristic of a sample fluid is being determined.
Abstract:
An electrochemical ion sensor and a method for sensing a presence of at least one ion species in a solution are provided. The electrochemical sensor includes a solid-state electrolyte medium doped with an organometallic material, having an electrochemical affinity with the ion species, and a pair of electrodes electrically contacting the solid-state electrolyte. The electrochemical sensor also includes an electrical circuit configured to drive the pair of electrodes with an AC electrical excitation and to measure at least one parameter related to a complex electrical impedance of the doped solid-state electrolyte medium in response to the AC electrical excitation. The parameter may be an electrical resistance, an inductance or a combination of both, and represents the presence of the ion species in the solution when the solid-state electrolyte medium is exposed to the solution.
Abstract:
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
Abstract:
Provided is a method for accurately quantifying a chemical substance contained in a sample solution at a significantly low concentration of not more than 1×10−8 M. A measurement system used for the method includes a counter electrode 13, a first reference electrode 12, a first working electrode 11a, a second working electrode 11b, a second reference electrode 14 and a gel-coated electrode 15. The gel-coated electrode 15 is electrically equivalent to the second working electrode 11b. The gel-coated electrode 15 comprises an electrode body 31 and a gel 34. The surface of the electrode body 31 is coated with the gel 34. The gel 34 contains a standard electrolyte and an ionic liquid. The gel 34 contains no water. The ionic liquid is hydrophobic and nonvolatile. The ionic liquid is composed of a cation and an anion. The standard electrolyte is composed of the cation and a halide ion.
Abstract:
An electrochemical device capable of improving arrangement efficiency of bonded bodies and securing favorable sealing characteristics is provided. An electrolyte membrane 11 has a reaction region 11A sandwiched between a fuel electrode 12 and an oxygen electrode 13 and a peripheral region 11B exposed from between the fuel electrode 12 and the oxygen electrode 13. A connection member 20 has a bent section 23 between two flat sections 21 and 22. Since an adhesive layer 14 is provided in the peripheral section 11B of the electrolyte membrane 11, and the bent section 23 of the connection member 20 is bonded to the adhesive layer 14, arrangement efficiency of a bonded body 10 is improved, and favorable sealing characteristics are secured. The adhesive layer 14 has a structure in which a first contact layer having high adhesion to the electrolyte membrane 11, a barrier layer, a strength retention layer, and a second contact layer having high adhesion to the connection member 20 are sequentially laminated. Since a connection-member-side adhesive layer is provided on the bent section 23 of the connection member 20, adhesion strength can be further improved.
Abstract:
A sensor element for determining at least one physical property of a gas in a measuring gas chamber, particularly for determining an oxygen concentration in an exhaust gas. The sensor element includes at least one first electrode and at least one second electrode, and at least one solid electrolyte connecting the first electrode and the second electrode. The second electrode is situated on the inside of the sensor element and is able to have gas from the measuring gas chamber applied to it via at least one gas access hole and at least one diffusion barrier. At least partially gas-impermeable cover layer is provided on the diffusion barrier, at least from area to area. The gas access hole has at least one chamfer in the vicinity of the cover layer.