摘要:
A sensing apparatus (and corresponding method) for monitoring carbon dioxide dissolved in a liquid solution employs a crystal surrounded in part by a sample chamber such that, in use, the liquid solution is in direct contact with the crystal.
摘要:
A sensing apparatus (and corresponding method) for monitoring carbon dioxide dissolved in a liquid solution employs a crystal surrounded in part by a sample chamber such that, in use, the liquid solution is in direct contact with the crystal.
摘要:
Methods and apparatus for investigating a hydrocarbon bearing geological formation traversed by a borehole are disclosed. A borehole tool is used to acquire a sample of fluid in the formation. Compositional analysis of the fluid sample is conducted to provide a determination of the composition of the sample. The sample composition is then related to a model of the thermodynamic behavior of the fluid; i.e., the mass fractions of the fluid components are used as inputs to an equation of state (EOS) to predict the phase behavior of the fluid.
摘要:
The present invention, in one set of embodiments, provides methods and systems for integrating conducting diamond electrodes into a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, diamond electrodes may be integrated into a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the electrodes and increasing the rate of mass transport to the diamond electrodes. The diamond electrodes may be used as working, reference or counter electrodes or a combination of two or more of such electrodes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the diamond electrodes may be coupled with the acoustic horn.
摘要:
An optical element, which may be part of a system for optical analysis of a material in contact with it, is kept clean by means of the vibrations of a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, one or more optical interfacial elements may be integrated with a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the optical interfacial elements and/or combining optical and acoustic measurements made by the integrated system for analysis purposes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the optical interfacial elements may be integrated with the acoustic horn.
摘要:
The present invention, in one set of embodiments, provides methods and systems for integrating conducting diamond electrodes into a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, diamond electrodes may be integrated into a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the electrodes and increasing the rate of mass transport to the diamond electrodes. The diamond electrodes may be used as working, reference or counter electrodes or a combination of two or more of such electrodes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the diamond electrodes may be coupled with the acoustic horn.
摘要:
A gas separation and detection tool for performing in situ analysis of borehole fluid is described. A separation system such as a membrane is employed to separate one or more target gasses from the borehole fluid. The separated gas may be detected by reaction with another material or spectroscopy. When spectroscopy is employed, a test chamber defined by a housing is used to hold the gas undergoing test. Various techniques may be employed to protect the gas separation system from damage due to pressure differential. For example, a separation membrane may be integrated with layers that provide strength and rigidity. The integrated membrane separation may include one or more of a water impermeable layer, gas selective layer, inorganic base layer and metal support layer. The gas selective layer itself can also function as a water impermeable layer. The metal support layer enhances resistance to differential pressure. Alternatively, the chamber may be filled with a liquid or solid material.
摘要:
Embodiments of the present invention provide methods and systems for integrating optical interfacial elements with a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, one or more optical interfacial elements may be integrated with a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the optical interfacial elements and/or combining optical and acoustic measurements made by the integrated system for analysis purposes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the optical interfacial elements may be integrated with the acoustic horn.
摘要:
Among other things, one or more techniques and/or systems are provided for facilitating the completion of a user task. That is, user intent (e.g., intentions of a user to perform a user task) may be identified. The user intent may comprise an entity (e.g., a movie entity) and/or an action (e.g., an order movie tickets action) that the user wants to perform on the entity. A provider list may be created based upon one or more providers capable of performing the action on the entity (e.g., a movie application may be capable of performing the order movie tickets action on the movie entity). Providers may be dynamically selected for inclusion within the provider list at run-time. For example, an open market of providers may be maintained (e.g., providers may be added, removed, and/or updated over time), such that providers may be selected from the open market to complete user tasks.
摘要:
Desirable completion zones can be identified using closure stress in combination with one or more other attributes such as porosity. One computer-based well placement method includes using the computer to: process a seismic data volume to map the spatial distribution of a seismic-based CSS attribute; acquire logs from one or more boreholes in the subsurface region; derive from the logs a relationship between CSS and a minimum in-situ stress; apply the relationship to the CSS attribute map to produce a landing map that highlights desirable completion zones; and place one or more wells in the desirable completion zones. The borehole logs may include direct measurements of minimum in-situ stress (acquired via microfracture testing), sonic tool measurements of P-wave and S-wave velocity, and density tool measurements of bulk formation density.