摘要:
An apparatus, a method, and computer readable medium thereof for dividing a beacon interval are provided. The beacon interval is divided into a plurality of sub-beacon intervals in various sizes and each of the sub-beacon intervals is further divided into a predetermined number of time slots. Each of the sub-beacon intervals is similar to the beacon interval, and the difference between them is their time lengths. Therefore, more time slots in various sizes are provided. Consequently, nodes covered by the beacon interval can choose suitable time slots to transmit data to reduce waste of bandwidth. In addition, more time slots that are sub-contention free periods are provided, so transmitting data via time slots that are sub-contention access periods can be prevented. It means that collisions and data transmission can be reduced as well.
摘要:
An apparatus for a beacon-enabled wireless network, a transmission time determination method, and a tangible machine-readable medium thereof are provided. The apparatus is located within the coverage area of the first equipment. The second equipment is located within the coverage area of the apparatus. The apparatus comprises a receive/transmission module and a decision module. The receive/transmission module is configured to receive the beacon of the first equipment. The decision module is configured to decide information of an upload time slot and a download time slot of the apparatus according to the beacon so that the receive/transmission module can perform data transmission with the first equipment by the upload time slot and perform data transmission with the second equipment by the download time slot. According to the aforementioned allocations, transmission collisions can be avoided and delay of transmission times is decreased.
摘要:
An apparatus for a beacon-enabled wireless network, a transmission time determination method, and a tangible machine-readable medium thereof are provided. The apparatus is located within the coverage area of the first equipment. The second equipment is located within the coverage area of the apparatus. The apparatus comprises a receive/transmission module and a decision module. The receive/transmission module is configured to receive the beacon of the first equipment. The decision module is configured to decide information of an upload time slot and a download time slot of the apparatus according to the beacon so that the receive/transmission module can perform data transmission with the first equipment by the upload time slot and perform data transmission with the second equipment by the download time slot. According to the aforementioned allocations, transmission collisions can be avoided and delay of transmission times is decreased.
摘要:
A mobile communications device is provided. A first radio module communicates with a communications device in compliance with a first protocol. A second radio module communicates with a base station in compliance with a second protocol. A CLC radio manager receives a traffic pattern from the first radio module indicating a first traffic allocation for the first radio module, obtains timing information of the base station, obtains a native reference clock from a clock source, converts values of the traffic pattern into the native reference clock counts, aligns the converted traffic pattern with the timing information of the base station, generates one or more CLC bitmaps for the first radio module by converting the aligned traffic pattern into a plurality of WiMAX frames or sub-frames of the timing information, and transmits the generated CLC bitmaps to the base station to recommend a second traffic allocation of the frames or sub-frames.
摘要:
An automated generation method of hardware/software interface for SIP development is provided. The method comprises establishing a template wherein an interface template is established for enabling a user to quickly generate a system architecture, designing a hardware access program wherein a driver is provided for a model of the interface template so that a user is able to run the driver to verify the correctness of a designed IP, designing a driver for creating a driver complying with a driver of an OS, and repeatedly verifying a created design module and a management module so as to determine the correctness of codes created by an interface module.
摘要:
The invention provides a mobile communication device having a Packet Traffic Arbitrator (PTA) module and a first wireless communication module, coupled to the PTA module via only one wire and configured to perform a first wireless transceiving. The first wireless communication module sends a first request indicating a remaining period of time for a second wireless communication module to use to the PTA module via the wire, and receives, via the wire, a first response indicating whether the first request has been accepted.
摘要:
A communications apparatus is provided. A first radio module provides a first wireless communications service and communicates with a first communications device in compliance with a first protocol. A second radio module provides a second wireless communications service and communicates with a second communications device in compliance with a second protocol. A Co-Located Coexistence radio manager detects activities of the first radio modules, obtains a first traffic pattern describing downlink and/or uplink traffic allocations of the first radio module from the first radio module, and generates a second traffic pattern of the second radio module according to the first traffic pattern to coordinate operations of the first and second radio modules. The second traffic pattern describes recommended downlink and/or uplink traffic allocations to a plurality of sub-frames for the second radio module, and each sub-frame defined by the second protocol includes Orthogonal Frequency Division Multiplexing symbols.
摘要:
An apparatus includes a first and a second wireless communication modules and a packet traffic arbitration (PTA) module. The first wireless communication module issues a first request for a first transmission or reception operation in a first time period, wherein the first request includes information regarding a first power level for performing the first TX or RX operation. The second wireless communication module issues a second request for a second TX or RX operation in a second time period, wherein the second request includes information regarding a second power level for performing the second TX or RX operation. The packet traffic arbitration module receives the first request and the second request, and grants one or both of the first request and the second request according to the first power level and the second power level when the first time period is overlapped with the second time period.
摘要:
An apparatus includes a first and a second wireless communication modules and a packet traffic arbitration (PTA) module. The first wireless communication module issues a first request for a first transmission or reception operation in a first time period, wherein the first request includes information regarding a first power level for performing the first TX or RX operation. The second wireless communication module issues a second request for a second TX or RX operation in a second time period, wherein the second request includes information regarding a second power level for performing the second TX or RX operation. The packet traffic arbitration module receives the first request and the second request, and grants one or both of the first request and the second request according to the first power level and the second power level when the first time period is overlapped with the second time period.
摘要:
A communications apparatus is provided. A first radio module provides a first wireless communications service and communicates with a first communications device in compliance with a first protocol. A second radio module provides a second wireless communications service and communicates with a second communications device in compliance with a second protocol. A Co-Located Coexistence radio manager detects activities of the first radio modules, obtains a first traffic pattern describing downlink and/or uplink traffic allocations of the first radio module from the first radio module, and generates a second traffic pattern of the second radio module according to the first traffic pattern to coordinate operations of the first and second radio modules. The second traffic pattern describes recommended downlink and/or uplink traffic allocations to a plurality of sub-frames for the second radio module, and each sub-frame defined by the second protocol includes Orthogonal Frequency Division Multiplexing symbols.