摘要:
Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable binderless adsorbents (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume), particularly those with a water content from about 3% to about 5.5% by weight, improve capacity and/or mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
摘要:
Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise small-crystallite-size zeolite X having an average crystallite size of less than 1.8 microns. The adsorbents may be binderless (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume) to further improve capacity and mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
摘要:
A process for separating para-xylene from a mixture of C8 alkylaromatics comprises contacting the mixture of C8 alkylaromatics with a zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
摘要:
A zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
摘要:
Binderless BaKX zeolitic adsorbents, methods for their production, and adsorptive separation using the adsorbents are provided. An adsorbent comprises a first Zeolite X having a silica to alumina molar ratio of from about 2.0 to about 3.0; a binder-converted Zeolite X wherein a ratio of the binder-converted Zeolite X to the first Zeolite X ranges from about 10:90 to about 20:80 by weight; and barium and potassium at cationic exchangeable sites within the binderless BaKX zeolitic adsorbent. Potassium ranges from about 0.9 wt % to about 1.5 wt % and barium ranges from about 30 wt % to about 34 wt % of the binderless BaKX zeolitic adsorbent.
摘要:
Difluoromethane (R-32) is of current interest as a partial replacement for chlorodifluoromethane (R-22) refrigerant heretofore widely used in vapor compression refrigeration systems. R-32 has, however, proved to be more reactive than is desirable with the zeolite A adsorbent-desiccant compositions used in such systems to prevent corrosion and freeze-up problems. The potassium cation form of a zeolite A molecular sieve—with at least 60 percent of the sodium cations replaced with potassium ions, agglomerated with a clay binder, and pore-reduced to essentially exclude the adsorption of R-32 having essentially no reactivity with difluoromethane, and having a surface ratio of silicon to aluminum of less than about 1.7 mol/mol as determined by X-ray photoelectron spectroscopy—has been found to be an effective desiccant for refrigerants comprising difluoromethane.
摘要:
Difluoromethane (R-32) is of current interest as a partial replacement for chlorodifluoromethane (R-22) refrigerant heretofore widely used in vapor compression refrigeration systems. R-32 has, however, proved to be more reactive than is desirable with the zeolite A adsorbent-desiccant compositions used in such systems to prevent corrosion and freeze-up problems. The potassium cation form of a zeolite A molecular sieve--with at least 60 per cent of the sodium cations replaced with potassium ions, agglomerated with a clay binder and pore-reduced to essentially exclude the adsorption of R-32, and having essentially no reactivity with difluoromethane--has been found to be an effective desiccant for refrigerants comprising difluoromethane.
摘要:
A zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
摘要:
A zeolite X having (a) a Si/Al framework mole ratio in a range from 1.0 to 1.5; (b) a mean diameter not greater than 2.7 microns; and (c) a relative LTA intensity not greater than 0.35, as determined by x-ray diffraction (XRD). The relative LTA intensity is calculated as 100 times the quotient of a sample LTA XRD intensity divided by a reference XRD intensity of an LTA-type zeolite material. The intensities are summed for each LTA peak with Miller indices of (2 0 0), (4 2 0), and (6 2 2) at 7.27±0.16°, 16.29±0.34° and 24.27±0.50° 2θ.
摘要:
A zeolite X having (a) a Si/Al framework mole ratio in a range from 1.0 to 1.5; (b) a mean diameter not greater than 2.7 microns; and (c) a relative LTA intensity not greater than 0.35, as determined by x-ray diffraction (XRD). The relative LTA intensity is calculated as 100 times the quotient of a sample LTA XRD intensity divided by a reference XRD intensity of an LTA-type zeolite material. The intensities are summed for each LTA peak with Miller indices of (2 0 0), (4 2 0), and (6 2 2) at 7.27±0.16°, 16.29±0.34° and 24.27±0.50° 2θ.