摘要:
An improved apparatus is provided for transcranial magnetic stimulation in a brain of a subject. The apparatus is comprised of: a plurality of coils electrically connected in series to each other; and a single source of current electrically coupled to one of the plurality of coils. Each coil may include one or more windings of similar dimensions although the size of the windings varies between coils. Each of the coils is further dimensioned to stimulate brain tissue at a given distance while minimizing volume of the brain tissue excited by the magnetic field. During operation, the current source injects time varying current into the coils to create a magnetic field which in turn induces electric fields and eddy-currents inside the brain tissue of the subject.
摘要:
An improved apparatus is provided for transcranial magnetic stimulation in a brain of a subject. The apparatus is comprised of: a plurality of coils electrically connected in series to each other; and a single source of current electrically coupled to one of the plurality of coils. Each coil may include one or more windings of similar dimensions although the size of the windings varies between coils. Each of the coils is further dimensioned to stimulate brain tissue at a given distance while minimizing volume of the brain tissue excited by the magnetic field. During operation, the current source injects time varying current into the coils to create a magnetic field which in turn induces electric fields and eddy-currents inside the brain tissue of the subject.
摘要:
Planar sub-wavelength structures provide superlensing, i.e., electromagnetic focusing beyond the diffraction limit. The planar structures use diffraction to force the input field to converge to a spot on the focal plane. The sub-wavelength patterned structures manipulate the output wave in such a manner as to form a sub-wavelength focus in the near field. In some examples, the sub-wavelength structures may be linear grating-like structures that can focus electromagnetic radiation to lines of arbitrarily small sub-wavelength dimension, or two dimensional grating-like structures and Bessel (azimuthally symmetric) structures that can focus to spots of arbitrarily small sub-wavelength dimensions. The particular pattern for the sub-wavelength structures may be derived from the desired focus. Some examples describe sub-wavelength structures that have been implemented to focus microwave radiation to sub-wavelength dimensions in the near field.
摘要:
Disclosed herein is a method of fabricating an antenna in which a flexible stamp is formed from a first wafer, the first wafer transferring a pattern to the flexible stamp, in which an antenna substrate is shaped into a three-dimensional contour with a second mold, in which the flexible stamp is positioned in the second mold to deform the flexible stamp into the three-dimensional contour, and in which a metallic layer on the flexible stamp is cold welded to create a set of antenna traces on the antenna substrate in accordance with the pattern. The antenna traces may then be electroplated.
摘要:
An antenna includes a dielectric substrate having a three-dimensional contour, and a set of antenna traces on the dielectric substrate. Each antenna trace spirals around the three-dimensional contour in a helical pattern. Each antenna trace includes a plated metallic layer.
摘要:
Tensor transmission-line metamaterial unit cells are formed that allow the creation of any number of optic/electromagnetic devices. A desired electromagnetic distribution of the device is determined, from which effective material parameters capable of creating that desired distribution are obtained, for example, through a transformation optics/electromagnetics process. These effective material parameters are then linked to lumped or distributed circuit networks that achieve the desired distribution.
摘要:
Planar sub-wavelength structures provide superlensing, i.e., electromagnetic focusing beyond the diffraction limit. The planar structures use diffraction to force the input field to converge to a spot on the focal plane. The sub-wavelength patterned structures manipulate the output wave in such a manner as to form a sub-wavelength focus in the near field. In some examples, the sub-wavelength structures may be linear grating-like structures that can focus electromagnetic radiation to lines of arbitrarily small sub-wavelength dimension, or two dimensional grating-like structures and Bessel (azimuthally symmetric) structures that can focus to spots of arbitrarily small sub-wavelength dimensions. The particular pattern for the sub-wavelength structures may be derived from the desired focus. Some examples describe sub-wavelength structures that have been implemented to focus microwave radiation to sub-wavelength dimensions in the near field.
摘要:
Planar sub-wavelength structures provide superlensing, i.e., electromagnetic focusing beyond the diffraction limit. The planar structures use diffraction to force the input field to converge to a spot on the focal plane. The sub-wavelength patterned structures manipulate the output wave in such a manner as to form a sub-wavelength focus in the near field. In some examples, the sub-wavelength structures may be linear grating-like structures that can focus electromagnetic radiation to lines of arbitrarily small sub-wavelength dimension, or two dimensional grating-like structures and Bessel (azimuthally symmetric) structures that can focus to spots of arbitrarily small sub-wavelength dimensions. The particular pattern for the sub-wavelength structures may be derived from the desired focus. Some examples describe sub-wavelength structures that have been implemented to focus microwave radiation to sub-wavelength dimensions in the near field.
摘要:
Disclosed herein is a method of fabricating an antenna in which a flexible stamp is formed from a first wafer, the first wafer transferring a pattern to the flexible stamp, in which an antenna substrate is shaped into a three-dimensional contour with a second mold, in which the flexible stamp is positioned in the second mold to deform the flexible stamp into the three-dimensional contour, and in which a metallic layer on the flexible stamp is cold welded to create a set of antenna traces on the antenna substrate in accordance with the pattern. The antenna traces may then be electroplated.
摘要:
Tensor transmission-line metamaterial unit cells are formed that allow the creation of any number of optic/electromagnetic devices. A desired electromagnetic distribution of the device is determined, from which effective material parameters capable of creating that desired distribution are obtained, for example, through a transformation optics/electromagnetics process. These effective material parameters are then linked to lumped or distributed circuit networks that achieve the desired distribution.