摘要:
The invention provides dendrimers, conjugates thereof, and methods of using dendrimer conjugates. In one embodiment, the invention provides novel polymeric dendrimers as a new class of fluorescent labels. The labels can include multiple fluorescent dye molecules conjugated to a single polymeric backbone or core, such as a dendrimer. The dendrimers can have regular or irregular branched polymeric network structures that allow for the chemical attachment of multiple dye molecules, multiple color dyes, and/or multiple functional groups, in a combinatorial fashion. The fluorescent dendritic nanoprobes (FDNs) thus provide a new class of fluorescent reporters for fluorescence microscopy and imaging.
摘要:
Disclosed herein is a nanostructured thin film. The nanostructured thin film comprises a nanoparticle layer and a number of micro-undulated surfaces formed on the nanoparticle layer. The two micro-undulated structures of the nanostructured thin film are uniformly introduced over a large area. This configuration makes it easy to control the surface properties of the nanostructured thin film. Therefore, the nanostructured thin film can be widely applied to a variety of devices. Also disclosed herein is a method for controlling the surface properties of the nanostructured thin film.
摘要:
Photonic nanostructures, light absorbing apparatuses, and devices are provided. The photonic nanostructures include a plurality of photonic nanobars configured to collectively absorb light over an excitation wavelength range. At least two of the photonic nanobars of the plurality have lengths that are different from one another. Each photonic nanobar of the plurality has a substantially small width and a substantially small height relative to the different lengths. A method for forming such may comprise forming a plurality of first photonic nanobars comprising a width and a height that are smaller than a length of the plurality of first photonic nanobars, and forming a plurality of second photonic nanobars comprising a width and a height that are smaller than a length of the second photonic nanobar, wherein the lengths of the plurality of first photonic nanobars and the lengths of the plurality of second photonic nanobars are different from one another.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
The invention provides dendrimers, conjugates thereof, and methods of using dendrimer conjugates. In one embodiment, the invention provides novel polymeric dendrimers as a new class of fluorescent labels. The labels can include multiple fluorescent dye molecules conjugated to a single polymeric backbone or core, such as a dendrimer. The dendrimers can have regular or irregular branched polymeric network structures that allow for the chemical attachment of multiple dye molecules, multiple color dyes, and/or multiple functional groups, in a combinatorial fashion. The fluorescent dendritic nanoprobes (FDNs) thus provide a new class of fluorescent reporters for fluorescence microscopy and imaging.
摘要:
A molecule is separated from a liquid sample containing said molecule and at least one additional molecule having a larger hydrodynamic diameter than the hydrodynamic diameter of the molecule to be separated, by means of a separation device comprising a substrate, at least one circulation channel arranged in said substrate, and at least one nanotube associated with said molecule to be separated and formed on a free surface of the substrate. Separation is achieved by means of the internal channel of a nanotube, such as a carbon nanotube, presenting an effective diameter chosen in predetermined and controlled manner. The effective diameter of the internal channel is chosen such as to be larger than the hydrodynamic diameter of the molecule to be separated and smaller than the hydrodynamic diameter of the additional molecules of larger hydrodynamic diameters.
摘要:
A magnetic field sensor including a body including a magnetic mechanism capable of forming a torque applied on the body by action of an external magnetic field to be detected; a connector, separated from the body, mechanically connecting the body to an inlay portion of the sensor by at least one pivot link having an axis perpendicular to the direction of the magnetic field to be detected; a detector detecting stress applied by the body by action of the torque, separated from the connector and including at least one suspended stress gauge including a first part mechanically connected to the inlay portion, a second part mechanically connected to the body, and a third part provided between the first and second parts and suspended between the inlay portion and the body.
摘要:
Planar sub-wavelength structures provide superlensing, i.e., electromagnetic focusing beyond the diffraction limit. The planar structures use diffraction to force the input field to converge to a spot on the focal plane. The sub-wavelength patterned structures manipulate the output wave in such a manner as to form a sub-wavelength focus in the near field. In some examples, the sub-wavelength structures may be linear grating-like structures that can focus electromagnetic radiation to lines of arbitrarily small sub-wavelength dimension, or two dimensional grating-like structures and Bessel (azimuthally symmetric) structures that can focus to spots of arbitrarily small sub-wavelength dimensions. The particular pattern for the sub-wavelength structures may be derived from the desired focus. Some examples describe sub-wavelength structures that have been implemented to focus microwave radiation to sub-wavelength dimensions in the near field.
摘要:
The disclosure relates to methods and composition for generating nanoscale devices, systems, and enzyme factories based upon a nucleic acid nanostructure the can be designed to have a predetermined structure.
摘要:
Disclosed herein is a nanostructured thin film. The nanostructured thin film comprises a nanoparticle layer and a number of micro-undulated surfaces formed on the nanoparticle layer. The two micro-undulated structures of the nanostructured thin film are uniformly introduced over a large area. This configuration makes it easy to control the surface properties of the nanostructured thin film. Therefore, the nanostructured thin film can be widely applied to a variety of devices. Also disclosed herein is a method for controlling the surface properties of the nanostructured thin film.