Abstract:
A scalable, distributed load control system for home automation based on a network of microphones may include control devices (e.g., load control devices) that may include microphones for monitoring the system and communicating audio data to a cloud server for processing. The control devices of the load control system may receive a single voice command and may be configured to choose one of the load control devices to transmit the voice command to the cloud server. The load control devices may be configured to receive a voice command, control a connected load according to the voice command if the voice command is a validated command, and transmit the voice command to a voice service in the cloud if the voice command is not a validated command. The voice service to which the load control devices transmit audio data to may be selectable.
Abstract:
A load control system may include control-target devices for controlling an amount of power provided to an electrical load. The control-target devices may be capable of controlling the amount of power provided to the electrical load based on control instructions. The control-target devices and/or the control-instructions may be determined based on a gesture performed by a user. The user may wear a wearable control device capable of measuring movements performed by the user and transmit digital messages that may be used to control an electrical load. The wearable control device may identify gestures performed by the user for controlling a control-target device and/or provide control instructions to the control-target device based on the identified gestures. A gesture may be associated with a scene that includes a configuration of one or more control devices in a load control system.
Abstract:
A load control system may control an electrical load in a space of a building based on one or more parameters regarding the physical condition of an occupant. The parameters may be biometric parameters of an occupant that may be gathered by one or more sensing devices. The sensing devices may be included in a mobile device. A system controller may receive the parameters and may automatically control the electrical loads in response to the parameters. The system controller may control the electrical load to attempt to adjust the physical condition of the occupant in response to the sensed parameters. The system controller may control the electrical load to provide an alert, an alarm, and/or a warning in response to the sensed parameters.
Abstract:
A load control system may include a load control device for providing power to an electrical load and a control device that may send instructions to the load control device for providing the power to the electrical load. The control device may communicate with the load control device using a link address assigned to the load control device. The load control device may provide power to the electrical load in a manner that causes the electrical load to indicate the link address assigned to the load control device. The link address may be identified by a user or a user device. The identified link address may be associated with a load control device identifier that may identify a physical location of a load control device that is assigned the link address. A user may control a load control device at a physical location by sending instructions via the link address.
Abstract:
A load control system for controlling an electrical load in a space of a building occupied by an occupant may include a controller configured to determine the location of the occupant, and a load control device configured to automatically control the electrical load in response to the location of the occupant. The load control system may include a mobile device adapted to be located on or immediately adjacent the occupant and configured to transmit and receive wireless signals. The load control device may be configured to automatically control the electrical load when the mobile device is located in the space. The load control system may further comprise an occupancy sensor and the load control device may automatically control the electrical load when the occupancy sensor indicates that the space is occupied and the mobile device is located in the space.
Abstract:
A load control system may include a load control device for providing power to an electrical load and a control device that may send instructions to the load control device for providing the power to the electrical load. The control device may communicate with the load control device using a link address assigned to the load control device. The load control device may provide power to the electrical load in a manner that causes the electrical load to indicate the link address assigned to the load control device. The link address may be identified by a user or a user device. The identified link address may be associated with a load control device identifier that may identify a physical location of a load control device that is assigned the link address. A user may control a load control device at a physical location by sending instructions via the link address.
Abstract:
A load control system may include a load control device for providing power to an electrical load and a control device that may send instructions to the load control device for providing the power to the electrical load. The control device may communicate with the load control device using a link address assigned to the load control device. The load control device may provide power to the electrical load in a manner that causes the electrical load to indicate the link address assigned to the load control device. The link address may be identified by a user or a user device. The identified link address may be associated with a load control device identifier that may identify a physical location of a load control device that is assigned the link address. A user may control a load control device at a physical location by sending instructions via the link address.
Abstract:
A load control system may include a load control device for providing power to an electrical load and a control device that may send instructions to the load control device for providing the power to the electrical load. The control device may communicate with the load control device using a link address assigned to the load control device. The load control device may provide power to the electrical load in a manner that causes the electrical load to indicate the link address assigned to the load control device. The link address may be identified by a user or a user device. The identified link address may be associated with a load control device identifier that may identify a physical location of a load control device that is assigned the link address. A user may control a load control device at a physical location by sending instructions via the link address.
Abstract:
A load control system may include control devices capable of being associated with each other at one or more locations for performing load control. Control devices may include control-source devices and/or control-target devices. A location beacon may be discovered and a unique identifier in the location beacon may be associated with a unique identifier of one or more control devices. Upon subsequent discovery of the location beacon, the associated load control devices may be controlled. The beacons may be communicated via radio frequency signals, visible light communication, and/or audio signals. The visible light communication may be used to communicate other types of information to devices in the load control system. The visible light communication may be used to identify link addresses for communicating with load control devices, load control instructions, load control configuration instructions, network communication information, and/or the like. The information in the beacons may be used to commission and/or control the load control system.