Abstract:
A preamble of a physical layer (PHY) data unit that conforms to a first communication protocol is generated. The preamble includes a legacy field that is formatted according to a second communication protocol, and a signal field having a first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol. The first OFDM symbol (i) immediately follows the legacy field and (ii) is modulated using binary phase shift keying (BPSK) modulation, whereas a third communication protocol specifies that an OFDM symbol, defined by the third communication protocol, that immediately follows the legacy field is modulated using BPSK modulation rotated by 90 degrees (Q-BPSK). The second OFDM symbol (i) immediately follows the first OFDM symbol and (ii) is modulated using Q-BPSK to indicate to a receiver device that conforms to the first communication protocol that the data unit conforms to the first communication protocol.
Abstract:
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.
Abstract:
Timestamps associated with when transmissions are sent and received between a pair of communication devices are used to determine a distance between the pair of communication devices. The communication devices operate according to a wireless communication protocol, which specifies that a requester of a ranging measurement session is to compensate for a clock frequency offset between the pair of communication device and that a responder is not to compensate for the clock frequency offset. As part of the ranging measurement session, the responder sends feedback to the requester, where the feedback includes timestamps recorded by the responder. The timestamps in the feedback are not compensated for the clock frequency offset by the responder. After receiving the feedback, the requester compensates the timestamps in the feedback for the clock frequency offset before using the timestamps to calculate the distance between the pair of communication devices.
Abstract:
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.
Abstract:
Methods, systems, and apparatus are disclosed for determining accurate ranging measurements between communication devices. Various embodiments are described for recording timestamps associated with when transmissions are sent and received between the communication devices. The communication devices are configured to determine a difference in their clock frequencies and to communicate this difference with one another. Furthermore, each of the communication devices is configured to compensate for these differences before or after the timestamps are exchanged and to send a compensation indicator of whether the compensation has been performed. If the compensation has not been performed, either of the communication devices can compensate for the clock frequency differences after receiving the timestamps based on the compensation indicator. By using compensated clock frequencies based on a single clock reference, highly accurate ranging measurements are obtained using round trip propagation time calculations.
Abstract:
Apparatuses and methods for receiving and transmitting signals are provided. A baseband processor includes receiver circuitry including single carrier receiver circuitry for demodulating a received single carrier signal and multi-carrier receiver circuitry for demodulating a received multi-carrier signal. The single carrier receiver circuitry includes a first digital interpolator, and the multi-carrier receiver circuitry includes a second digital interpolator. Symbol timing recovery is executed by adjusting an interpolation phase of the first digital interpolator or the second digital interpolator. The baseband processor also includes transmitter circuitry for encoding a signal to be transmitted. The baseband processor further includes a clock coupled to the receiver circuitry and coupled to the transmitter circuitry. The clock is configured to supply a clock signal that is processed to generate clock sampling frequencies for sending and receiving a single carrier signal and a multi-carrier signal.
Abstract:
Systems and methods for detecting data in a received multiple-input-multiple-output signal are provided. N signals are received from N respective antennas, where the received signals are associated with (i) M sets of data values, (ii) a set of symbols, and (iii) a set of carrier frequencies. The N signals are formed into a received signal vector y, and one or more transformations are performed on the received signal vector y to obtain a transformed vector. A plurality of samples are formed from the transformed vector. For samples of the plurality of samples, a data detection technique of a plurality of data detection techniques is selected. The selecting is based on at least one of a spatial stream, a symbol, and a carrier frequency associated with the given sample. The selected data detection, technique is used to detect data of the given sample.
Abstract:
Systems and methods for detecting data in a received multiple-input-multiple-output signal are provided. N signals are received from N respective antennas, where the received signals are associated with (i) M sets of data values, (ii) a set of symbols, and (iii) a set of carrier frequencies. The N signals are formed into a received signal vector y, and one or more transformations are performed on the received signal vector y to obtain a transformed vector. A plurality of samples are formed from the transformed vector. For samples of the plurality of samples, a data detection technique of a plurality of data detection techniques is selected. The selecting is based on at least one of a spatial stream, a symbol, and a carrier frequency associated with the given sample. The selected data detection, technique is used to detect data of the given sample.
Abstract:
In a method for generating a preamble of a data unit for transmission via a multiple input, multiple output (MIMO) communication channel, a first field of the preamble is generated. The first field provides a plurality of indicators to a plurality of receivers. Each one of the plurality of indicators indicates a set of a plurality of training sequences that corresponds to transmission of the data unit to a corresponding one of the plurality of receivers. The plurality of training sequences is included in a second field of the preamble. The preamble is formatted such that the first field of the preamble will be transmitted prior to the second field of the preamble being transmitted.
Abstract:
According to one embodiment, an apparatus includes a first processing unit operating according to a first clock, a second processing unit operating according to a second clock running separately from the first clock, and a synchronization controller coupled to the first communication unit and the second communication unit. The synchronization controller is configured to (i) cause the first communication unit to generate a first indication of time at which the first processing unit transmits a signal to the second processing unit, according to the first clock, (ii) cause the second processing unit to generate a second indication of time at which the second processing unit receives the signal, according to the second clock, and (iii) determine an offset between the first clock and the second clock based on the first indication of time and the second indication of time.