Abstract:
Methods and systems are described for providing Bluetooth and Wi-Fi coexistence on an electronic device. Aspects of exemplary embodiments include determining Bluetooth link parameters for a Bluetooth connection and Wi-Fi link parameters for a Wi-Fi connection. Also, a Bluetooth path loss for the Bluetooth connection and a Wi-Fi path loss for the Wi-Fi connection can be determined. According to this embodiment, one or more link conditions, based upon one or more of the Bluetooth link parameters, the Wi-Fi link parameters, the Bluetooth path loss, and the Wi-Fi path loss, may be calculated to determine if simultaneous collaboration between the Bluetooth connection and Wi-Fi connection is feasible. In response to simultaneous collaboration being feasible, the Bluetooth link parameters and the Wi-Fi link parameters are customized based on the one or more link conditions to permit simultaneous collaboration between the Bluetooth connection and the Wi-Fi connection.
Abstract:
An integrated circuit including a transceiver module that receives beacons from an access point (AP), and transition a wireless network device to an active mode based on: a predetermined beacon interval; and a first predetermined period prior to one of multiple beacons. A timestamp module calculates a first correction value based on a first timestamp received from the AP. An adjustment module adjusts the first predetermined period based on the first correction value. A beacon module detects a beacon missed during an inactive mode by the transceiver module. The timestamp module transmits a probe request signal to the AP a second predetermined period after detection of the missed beacon, receives a second timestamp from the AP in response to the probe request signal, and recalculates the first correction value based on the second timestamp. The adjustment module adjusts the first predetermined period based on the recalculated first correction value.
Abstract:
USB self-idling techniques are described. In one or more embodiments, a Universal Serial Bus (USB) device comprises one or more modules to communicate via USB and self-idle by presenting an idle mode to a USB host and entering a suspend mode after the idle mode, the suspend mode being entered while the USB host is presented with the idle mode.
Abstract:
Methods and systems are described for providing Bluetooth and Wi-Fi coexistence on an electronic device. Aspects of exemplary embodiments include determining Bluetooth link parameters for a Bluetooth connection and Wi-Fi link parameters for a Wi-Fi connection. Also, a Bluetooth path loss for the Bluetooth connection and a Wi-Fi path loss for the Wi-Fi connection can be determined. According to this embodiment, one or more link conditions, based upon one or more of the Bluetooth link parameters, the Wi-Fi link parameters, the Bluetooth path loss, and the Wi-Fi path loss, may be calculated to determine if simultaneous collaboration between the Bluetooth connection and Wi-Fi connection is feasible. In response to simultaneous collaboration being feasible, the Bluetooth link parameters and the Wi-Fi link parameters are customized based on the one or more link conditions to permit simultaneous collaboration between the Bluetooth connection and the Wi-Fi connection.
Abstract:
USB self-idling techniques are described. In one or more embodiments, a Universal Serial Bus (USB) device comprises one or more modules to communicate via USB and self-idle by presenting an idle mode to a USB host and entering a suspend mode after the idle mode, the suspend mode being entered while the USB host is presented with the idle mode.
Abstract:
An integrated circuit including a transceiver module that receives beacons from an access point (AP), and transition a wireless network device to an active mode based on: a predetermined beacon interval; and a first predetermined period prior to one of multiple beacons. A timestamp module calculates a first correction value based on a first timestamp received from the AP. An adjustment module adjusts the first predetermined period based on the first correction value. A beacon module detects a beacon missed during an inactive mode by the transceiver module. The timestamp module transmits a probe request signal to the AP a second predetermined period after detection of the missed beacon, receives a second timestamp from the AP in response to the probe request signal, and recalculates the first correction value based on the second timestamp. The adjustment module adjusts the first predetermined period based on the recalculated first correction value.