Abstract:
A transducer reliability testing and VCSEL failure prediction method are provided. The method includes applying a testing temperature and a constant current to a VCSEL for a testing time. The method monitors a forward voltage of the VCSEL and determines if a first change in forward voltage is above a first predetermined threshold over the testing time and if a second change in forward voltage is above a second predetermined threshold over a portion of the testing time. The method determines failure of the VCSEL if either of these predetermined thresholds are exceeded. The method determines passage of the VCSEL if the first change in the forward voltage and the second change in the forward voltage are both below the first predetermined threshold and the second predetermined threshold, respectively.
Abstract:
An electro-optic transceiver module, method of manufacturing, and method of transmitting signals are provided that allow multiple optical signals at different wavelengths (e.g., according to CWDM) to be combined for transmission via a number of optical fibers that is smaller than the number of electrical channels according to which the optical signals were generated. Thus, CWDM may be used in connection with lower-cost VCSEL technology (e.g., as opposed to higher-cost edge-emitting lasers) by providing for wavelength compensation at the VCSEL driver to offset any changes in wavelength that may have otherwise occurred at the VCSELs. In particular, a microcontroller of the electro-optic transceiver module correlates a monitored temperature of the VCSELs to an actual wavelength of the corresponding optical signals transmitted by the respective VCSELS and determined an adjustment in a current supplied by the VCSEL driver to each VCSEL to achieve more precise and consistent wavelengths at the VCSELs.
Abstract:
An optoelectronic configuration method is provided. The method includes determining a baseline link budget value for the VCSEL. The method applies a constant input value to a VCSEL and monitors the output of the VCSEL. The method calculates a first link budget value from the inputs and outputs of the VCSEL and compares the first link budget value with the baseline link budget value to determine either a pass state of the VCSEL or a fail state of the VCSEL. If a fail state of the VCSEL is determined, the method may iteratively apply modified inputs to the VCSEL until the desired relationship between the first link budget value and the baseline link budget value is obtained.
Abstract:
A reconfigurable and redundant electro-optical connector and corresponding method are provided. The connector may include a first plurality of transducers in communication with a first port and a second plurality of transducers in communication with a second port, the first port and the first transducers defining a first channel and the second port and the second transducers defining a second channel. The connector may include a selective combiner to combine the first optical signals and the second optical signals, and a controller in communication with each of the transducers. The controller may transmit at least a first portion of a first datalink on at least the first channel in a first configuration. The controller may redistribute the first portion of the first datalink onto at least the second channel in a second configuration.
Abstract:
An printed circuit board (PCB) assembly and method of assembling the same for a high-speed, short-reach communication link are described that provide a mechanism for transmitting radio frequency (RF) waves from one digital electronic component of the PCB assembly to another, where the second digital electronic component is located either on the same PCB assembly or on a second PCB assembly. The assembly includes a PCB having multiple layers and a digital electronic component supported by the PCB. At least one of the layers defines a channel that confines RF waves therein. An RF antenna in communication with the digital electronic component extends into the channel, and the RF antenna transmits RF signals generated by the digital electronic component into the channel as RF waves or receives RF waves via the channel and conveys corresponding RF signals to the digital electronic component.
Abstract:
An opto-mechanical coupler and corresponding method of manufacture are provided. The coupler may include a body defining a bottom surface, a receiving surface, and a reflective surface. The reflective surface may redirect optical signals between a first direction and a second direction. The receiving surface may position one or more optical fibers along the second direction such that an optical signal from the plurality of optoelectronic transceivers may be directed into the one or more optical fibers or an optical signal received from the one or more optical fibers may be directed into the plurality of the optoelectronic transceivers. The receiving surface may also define grooves to locate each optical fiber at a height relative to a first optical path in the second direction.
Abstract:
An method for characterizing a modulator for fabricating a silicon photonics circuit and an apparatus (e.g., a silicon photonics wafer) made via the method are described. The method includes determining an absorption spectrum of a modulator and determining, based at least on the determined absorption spectrum, an operational bandwidth of the modulator. The method further includes selecting a laser for coupling with the modulator using the operational bandwidth of the modulator. In this way, the laser is selected such that it has an emission bandwidth that corresponds to the operational bandwidth of the modulator.
Abstract:
An apparatus includes an array of electro-optical transducers, control circuitry, and a connector housing. The electro-optical transducers are configured to convert between electrical signals and respective optical signals conveyed over respective optical fibers. The control circuitry is configured, in response to a failure of a first electro-optical transducer in the array that is associated with a given optical fiber, to switch one or more of the electrical signals and the optical signals so as to replace the first electro-optical transducer with a second electro-optical transducer in the array in conveying an optical signal over the given optical fiber. The connector housing contains the array of the electro-optical transducers and the control circuitry.
Abstract:
An apparatus includes an array of electro-optical transducers, control circuitry, and a connector housing. The electro-optical transducers are configured to convert between electrical signals and respective optical signals conveyed over respective optical fibers. The control circuitry is configured, in response to a failure of a first electro-optical transducer in the array that is associated with a given optical fiber, to switch one or more of the electrical signals and the optical signals so as to replace the first electro-optical transducer with a second electro-optical transducer in the array in conveying an optical signal over the given optical fiber. The connector housing contains the array of the electro-optical transducers and the control circuitry.
Abstract:
Optical components and associated methods of manufacturing are provided. An example optical component includes a body defined by an optical interposer substrate and a passivation layer applied to the optical interposer substrate. The optical interposer substrate defines a first surface of the body, and the passivation layer defines a second surface of the body opposite the first surface. The passivation layer includes a metallic shielding element configured to prevent interference between the first surface and the second surface. The optical component further includes an opening extending from the second surface to the optical interposer substrate, the opening defining an optical path through the passivation layer. The optical interposer substrate receives an optical signal from an optical transmitter supported by the second surface via the optical path.