Abstract:
A permanent magnet motor includes a rotor having a field pole of a rotor core, wherein the field pole has a radius smaller than an arc centered on a shaft of the rotor, a multiple of slits are formed in the field pole, the multiple of slits are disposed so that an interval between a first central line positioned between a multiple of the slits and a second central line positioned between a neighboring multiple of the slits increases as the first central line and the second central line head toward an outer peripheral side of the rotor core, and of the multiple of slits of the field pole, a first slit disposed in a central position of the field pole, and a second slit and a third slit disposed on either side of the first slit, are disposed within 20% of a circumferential direction width of the permanent magnet.
Abstract:
A stator of a rotary electrical machine according to the invention includes a core back, a plurality of teeth, a plurality of slots, and a coil. The coil is configured by a plurality of conductor wires. Between inside of the slot and outside of the slot, the plurality of conductor wires are bent at an angle smaller than 180° in a circumferential direction of the core back, and between the bent part and the inside of the slot, the plurality of conductor wires are bent in the circumferential direction of the core back and in an opposite direction to a bending direction of the bent part.
Abstract:
Provided is a rotor for a permanent magnet rotary electric machine, which enables the bonding of a permanent magnet to a rotor core in a skewed manner with respect to an axial direction of the rotor core. The rotor includes a rotor core including a cylindrical portion and a pair of polygonal colmnar portions provided to both ends of the cylindrical portion in the axial direction, and a permanent magnet having a bonding surface, which is flat and bonded to the rotor core. The pair of polygonal columnar portions has flat surfaces that are arranged so that center positions are spaced apart from each other as viewed in the axial direction. The bonding surface of the permanent magnet is bonded to the respective flat surfaces of the pair of polygonal columnar portions under a state in which the permanent magnet is skewed with respect to the axial direction.
Abstract:
A synchronous linear motor, including: a stator including projecting poles including magnetic bodies; and a movable element arranged opposed to the projecting poles through a space. The movable element includes a core with a magnetic body, coils, and permanent magnets arrayed along a moving direction. The core includes core backs and teeth projecting from the core backs toward the projecting poles. The coils are at least wound around the teeth on both end sides in the moving direction. The permanent magnets are arranged at center portions of the teeth along a projecting direction of the teeth. A polarity of a magnetic pole of the permanent magnet is the same as a polarity of an opposed magnetic pole in an adjacent permanent magnet. The number of different shapes of the permanent magnets or the number of different magnetic characteristics of the permanent magnets is two or more.
Abstract:
An armature has a plurality of armature cores arranged in a line in a first direction, coils wound on an area of the armature cores in a second direction, a carrier provided with a space in which to dispose the coils left in a third direction orthogonal to the first direction and the second direction with respect to the armature cores, and at least one mounting member to fix the armature cores and the carrier. The armature cores are fixed to the mounting member by first bolts, and the carrier is fixed to the mounting member by second bolts. The at least one mounting member, the first bolts, and the second bolts are disposed in positions not overlapping the coils when viewed from the third direction.
Abstract:
With regard to an end portion shape of a slit formed in a rotor core in which flux barriers are formed in a circumferential direction in an identical number to the number of poles by arranging one or more slits and core layers alternately in a radial direction, an end portion of a slit is shaped such that, when mg is set as the number of slit end portions, ni is set as a natural number no smaller than 1, α and β are set as numbers within a range of −¼ to ¼, q is set as a natural number no smaller than 1, and Ns is set as the number of slots, intervals δgi and εgi from a first slit end to an ith slit end of a slit wall on an identical circumferential direction side satisfy specific mathematical formulae.
Abstract:
A control device converts phase currents supplied to a permanent-magnet rotary motor into a d-axis current and a q-axis current on a dq coordinate axis, and calculates a current command (a d-axis current command or a q-axis current command) for changing at least one of values of the d-axis current and the q-axis current according to a rotor position, based on a torque command, the d-axis current and the q-axis current, so as to cause a magnitude of a reverse magnetic field acting on a permanent-magnet end part to be equal to or lower than a magnetic coercive force of a permanent magnet.
Abstract:
To maximize a power consumption reduction effect in a case of using a high-efficiency induction motor, when a conventional induction motor is changed to a high-efficiency induction motor, a mechanical device including an induction motor and a speed reduction mechanism related to the present invention increases the reduction ratio of the speed reducer such that the rotation speed of the mechanical device is equal to that in a case of using a conventional induction motor and thus the output of the mechanical device is made equal to that in a case of using a conventional inductor motor; therefore, the load conditions of the mechanical device such as a pump and a fan can be made equal to those in a case of using a conventional induction motor. Accordingly, the power consumption reduction effect by improving the efficiency of the induction motor can be maximized.
Abstract:
A permanent magnet rotary electric machine includes: a stator in which a plurality of teeth and a plurality of slots are formed on an inner periphery of a cylindrical stator core, and a winding wire is wound around the teeth so as to be disposed in the slots; and a rotor disposed in a hollow portion of the stator with an air gap between the rotor and the stator. In the rotor, 2n or more (n is a natural number equal to or larger than 1) radial projections are provided on an outer periphery of a rotor core, and a ferrite magnet is disposed between adjacent projections. A radial height of the projection is less than a thickness of middle of the ferrite magnet.
Abstract:
A rotary electric machine is a rotary electric machine including a stator of a distributed winding type including a plurality of first slots, in each of which winding wires of a plurality of same phases or winding wires of one phase are arranged, and a plurality of second slots, in each of which winding wires of a plurality of different phases are arranged. The total number of turns in each of the first slots is same as one another. The total number of turns in each of the second slots is same as one another. The total number of turns in the first slot and the total number of turns in the second slot are different from each other.