Abstract:
A focus detection unit to adjust a focal point of an image, of an object, formed by an optical system includes a first output section, a second output section, and a projection optical system. The first output section includes a first light modulation element configured to generate a first pattern image based on incident light and is configured to output the generated first pattern image. The second output section includes a second light modulation element configured to generate a second pattern image based on incident light and is configured to output the generated second pattern image. The projection optical system is configured to project the output first pattern image and the output second pattern image such that the output first pattern image and the output second pattern image have a predetermined positional relationship at an in-focus position of the optical system.
Abstract:
An image measuring apparatus includes a sample stage having a placement surface on which an object to be measured is placed; an image capture apparatus facing the placement surface of the sample stage and capturing an image of the object to be measured; and a pattern projection apparatus projecting a predetermined pattern onto the sample stage, the predetermined pattern providing a reference for at least one of a placement position and direction of the object to be measured on the placement surface.
Abstract:
A shape measuring apparatus includes: an irradiating part configured to irradiate work with a linear line laser, the irradiating part including: a light source configured to produce laser light; a first optical member configured to linearly spread the laser light from the light source and generate the line laser; and a second optical member, provided between the light source and the first optical member, configured to adjust an area of irradiation with a line laser on the work; a first sensor configured to receive a line laser reflected by the work and capture an image of the work; a lens configured to form an image of a line laser reflected by the work on an imaging surface of the first sensor; and a control part configured to control adjustment of the area of irradiation with the line laser on the work by the second optical member.
Abstract:
An LED ring light including a holding frame having a generally annular shape in a plan view and an aperture into which an objective lens can be inserted around a center of the holding frame; an LED substrate held inside the holding frame in a generally frusto-conical shape; and a plurality of LEDs arranged on an inner circumferential surface of the LED substrate. The LED substrate is divided at a plurality of locations in a circumferential direction of the inner circumferential surface of the holding frame by arranging a plurality of substrates side by side.
Abstract:
A shape measuring apparatus includes a first light source, a second light source, an optical system, an image capturer, and a controller. The first light source emits visible light. The second light source emits measurement light used in a measurement. The optical system emits the visible light and the measurement light at the same position on a work piece. The image capturer captures an image of the measurement light reflected by the work piece. The controller is configured to cause the emission of the visible light onto the work piece with the first light source when determining a measurement position, and to control the emission of the measurement light onto the work piece with the second light source when making the measurement.
Abstract:
An optical probe includes a probe cover, within which is installed an optical system having an illuminating optical system and a receiving optical system. An emitting region and an incidence region through which light passes are provided to a bottom surface of the probe cover, the bottom surface forming an opposing region opposite a work piece. In addition, a light reflection prevention structure or a diffusion structure is provided to the bottom surface of the probe cover. Light reflected from the work piece is prevented from reflecting off the bottom surface by the reflection prevention structure, or the reflected light is diffused by the diffusion structure. Accordingly, an occurrence of an erroneous value in received light distribution due to second order reflected light can be inhibited.
Abstract:
An optical probe includes a probe cover, within which is installed an optical system having an illuminating optical system and a receiving optical system. An emitting region and an incidence region through which light passes are provided to a bottom surface of the probe cover, the bottom surface forming an opposing region opposite a work piece. The bottom surface forms a surface where, of the light reflected from the work piece, light following a direct reflection direction is reflected in a direction moving away from the incidence region, from a position where light emitted from the emitting region is emitted at the work piece. Accordingly, an amount of second order reflected light striking the incidence region can be suppressed and, therefore, an occurrence of an erroneous value in received light distribution can be suppressed.