Abstract:
A radio frequency (RF) control system including a RF generator having a power amplifier that outputs a RF signal and a controller. A matching network receives the RF signal and generates a plurality of RF output signals. The matching network includes a ratio tuning element to vary a ratio of power between the plurality of RF output signals. The first controller communicates a ratio control signal to the matching network, and the matching network controls the ratio tuning element in accordance with the ratio control signal. The RF controls system operates in a continuous and pulse mode of operation. The controller can also control the rise or fall of a pulse edge or a level or duration of incremental changes in the pulse edge.
Abstract:
A radio frequency (RF) control system including a RF generator having a power amplifier that outputs a RF signal and a controller. A matching network receives the RF signal and generates at least one RF output signal. In a first mode of operation, the controller enables adjustment of the frequency of the RF signal and a tune element of the matching network to achieve an impedance match and in a second mode of operation the controller enables adjustment of only the tune element of the matching network to achieve an impedance match while the frequency is adjusted to a target frequency. The RF controls system operates in a continuous and pulse mode of operation.
Abstract:
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.