Abstract:
A radio frequency (RF) generator includes a power source configured to generate an RF signal applied to the load and a power controller coupled to the power source. The power controller is configured to generate a control signal to vary the RF signal, wherein the control signal adjusts a frequency of the RF signal in accordance with an external RF signal applied to the load. The frequency adjustment is variable in accordance with a cost responsive to a perturbation of the frequency of the RF signal.
Abstract:
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
Abstract:
A radio frequency (RF) control system including a RF generator having a power amplifier that outputs a RF signal and a controller. A matching network receives the RF signal and generates at least one RF output signal. In a first mode of operation, the controller enables adjustment of the frequency of the RF signal and a tune element of the matching network to achieve an impedance match and in a second mode of operation the controller enables adjustment of only the tune element of the matching network to achieve an impedance match while the frequency is adjusted to a target frequency. The RF controls system operates in a continuous and pulse mode of operation.
Abstract:
A radio frequency (RF) control system including a RF generator having a power amplifier that outputs a RF signal and a controller. A matching network receives the RF signal and generates a plurality of RF output signals. The matching network includes a ratio tuning element to vary a ratio of power between the plurality of RF output signals. The first controller communicates a ratio control signal to the matching network, and the matching network controls the ratio tuning element in accordance with the ratio control signal. The RF controls system operates in a continuous and pulse mode of operation. The controller can also control the rise or fall of a pulse edge or a level or duration of incremental changes in the pulse edge.
Abstract:
A radio frequency (RF) power generation system includes a RF power source that generates a RF output signal delivered to a load. A RF power controller is configured to generate a control signal to vary the RF output signal. The controller adjusts a parameter associated with the RF output signal, and the parameter is controlled in accordance with a trigger signal. The parameter is adjusted in accordance with a cost function, and the cost function is determined by intruding a perturbation into an actuator that affects the cost function. The actuator may control an external RF output signal, and the trigger signal may vary in accordance with the external RF output signal.
Abstract:
A radio frequency (RF) control system including a RF generator having a power amplifier that outputs a RF signal and a controller. A matching network receives the RF signal and generates at least one RF output signal. In a first mode of operation, the controller enables adjustment of the frequency of the RF signal and a tune element of the matching network to achieve an impedance match and in a second mode of operation the controller enables adjustment of only the tune element of the matching network to achieve an impedance match while the frequency is adjusted to a target frequency. The RF controls system operates in a continuous and pulse mode of operation.
Abstract:
A radio frequency (RF) power generation system includes a RF power source that generates a RF output signal delivered to a load. A RF power controller is configured to generate a control signal to vary the RF output signal. The controller adjusts a parameter associated with the RF output signal, and the parameter is controlled in accordance with a trigger signal. The parameter is adjusted in accordance with a cost function, and the cost function is determined by intruding a perturbation into an actuator that affects the cost function. The actuator may control an external RF output signal, and the trigger signal may vary in accordance with the external RF output signal.
Abstract:
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
Abstract:
A radio frequency power system includes a master RF generator and an auxiliary RF generator, wherein each generator outputs a respective RF signal. The master RF generator also outputs a RF control signal to the auxiliary RF generator, and the RF signal output by the auxiliary RF generator varies in accordance with the RF control signal. The auxiliary RF generator receives sense signals indicative of an electrical characteristic of the respective RF signals output by the master RF generator and the auxiliary RF generator. The auxiliary RF generator determines a phase difference between the RF signals. The sensed electrical characteristics and the phase are used independently or cooperatively to control the phase and amplitude of the RF signal output by the auxiliary RF generator. The auxiliary generator includes an inductive clamp circuit that returns energy reflected energy back from a coupling network to a variable resistive load.