Abstract:
A method for enabling full duplex direct mode calls between radios in an N:1 slotting ratio TDMA radio system includes detecting a request for a full duplex direct mode call at a first radio, transmitting in a particular slot of a first recurring time slot of N recurring time slots on a first single frequency one of a call request and a call header identifying the call as a full duplex call. Subsequently transmitting, by the first radio, during a plurality of subsequent first recurring time slots, outbound voice and/or data transmissions. And receiving, during a plurality of second recurring time slots of the N recurring time slots, each second recurring timeslot positioned immediately adjacent a respective first recurring time slot in an interleaved manner, inbound voice and/or data transmissions from the second radio and playing back the inbound voice and/or data transmission at the first radio.
Abstract:
A system and method for interrupting a transmitting device during a call. In the system, calls are transmitted from a first device on a communication channel as a series of channel frames. At predetermined times during the transmission, the transmitting device is configured to drop channel frames, resulting in open channel frame periods where the transmitting device is not transmitting on the communication channel. During these open channel frame periods, the transmitting device is also configured to switch to a receiving mode. Other devices in the system are capable of switching into a transmitting mode during the open channel frame periods and, when applicable, sending an interrupt request on the communication channel to the transmitting device in order to request access to the channel.
Abstract:
A method for enabling full duplex individual calls in repeater mode between two subscriber units (SUs) in a N:1 slotting ratio time division multiple access (TDMA) radio system includes receiving a request for a full duplex individual call from a first SU identifying a second SU as a target of the call. Determining to grant the request and subsequently assigning a first time slot of the N time slots on a first single frequency for one of inbound and outbound transmissions for the call between an assigned second repeater and the first SU and a second time slot on the first single frequency for the other of inbound and outbound transmissions for the call between the assigned second repeater and the first SU. Further, a grant message is transmitted to the first SU indicating the assigned first single frequency and assigned first and second time slots.
Abstract:
A process for connecting a user equipment to a radio access network in which communication frequencies are dynamically allocated from a shared radio spectrum. In operation, the user equipment maintains a radio frequency scan list that indicates a prioritized order with which a plurality of radio frequencies selected from the shared radio spectrum are to be scanned. The user equipment scans the radio frequencies in accordance with the prioritized order that is indicated in the radio frequency scan list and selects a target radio frequency from the radio frequencies based on the scanning of the radio frequencies. The target radio frequency corresponds to a frequency band that is dynamically allocated from the shared radio spectrum to a radio access network associated with the user equipment. The user equipment then connects to the radio access network using the frequency band corresponding to the target radio frequency.
Abstract:
A wireless method, apparatus, and system provide simultaneous transacting of voice and data on adjacent timeslots through a combination of channel access rules and sacrificing small audio portions when required. This includes wirelessly operating on at least two timeslots which are adjacent to one another, operating voice on a first timeslot of the at least two timeslots and monitoring a second timeslot of the at least two timeslots for data, and, responsive to a data transmission request and receiving voice on the first timeslot, discarding a portion of the voice in the first timeslot to provide a larger guard time for programming between the first timeslot and the second timeslot and transmitting data in the second timeslot based on the data transmission request.