Abstract:
A portable communications device includes a housing, a push button disposed along the housing, and an antenna radiating element disposed within the housing and spaced from the push button. The antenna radiating element is configured to be contacted and deflected by the push button to provide a tactile response when the push button is pressed.
Abstract:
Radio frequency architecture for reducing mutual interference between multiple wireless communication modalities. One embodiment provides a portable communications device including a housing and an RF antenna system including a first RF antenna, a second RF antenna, and a third RF antenna in the housing. The portable communications device includes an RF transceiver system including a first RF transceiver, a second RF transceiver, and a third RF transceiver operating in respective bands and an isolator circuit coupled to the RF antenna system and the RF transceiver system and configured to provide RF isolation between the first RF transceiver, the second RF transceiver, and the third RF transceiver. The isolator circuit includes an RF coupler featuring six RF coupler ports coupled to the first RF antenna, the second RF antenna, the third RF antenna, the first RF transceiver, the second RF transceiver, and the third RF transceiver through respective phasor shaping networks.
Abstract:
A passive radio-frequency redirector device is provided that includes: a polarized antenna configured to produce a radiation pattern in an azimuthal plane; and a directional antenna configured to produce a directional radiation pattern that is substantially complementary to the radiation pattern of the polarized antenna, wherein the directional radiation pattern is substantially cross-polarized relative to the radiation pattern of the polarized antenna, and the polarized antenna and the directional antenna are passively coupled together.
Abstract:
Methods and systems for mitigating interference between different transceivers in a portable communication device. An electronic control circuit is configured to quantify an electromagnetic isolation between a first transceiver of a portable communication and a second transceiver of the portable communication device based on a detected radio frequency power coupled to the first transceiver from radio frequency signals transmitted by the second transceiver. A mitigation action is selected from a plurality of mitigation actions based on a magnitude of the quantified electromagnetic isolation. The selected mitigation action is then applied to the second transceiver to adjust at least one radio frequency characteristic of the second transceiver.
Abstract:
Communication device with configurable antenna interface and method for configuring an antenna interface. One implementation of the communication device includes an RF transceiver, a threaded coaxial antenna connector, a first RF terminal, a second RF terminal, an RF signal conduit, and an interface circuit. The threaded coaxial antenna connector includes inner and outer terminals. The RF signal conduit includes a first structure that couples the first RF terminal to the inner terminal of the threaded coaxial antenna connector. The RF signal conduit further includes a second structure that couples the second RF terminal to the outer terminal of the threaded coaxial antenna connector. The interface circuit is configured to set an SMA antenna interface mode by coupling the RF transceiver to the first RF terminal. The interface circuit is also configured to set a ferrule antenna interface mode by coupling the RF transceiver to the second RF terminal.
Abstract:
Portable communications devices with reduced interference between communication systems. One embodiment provides a portable communications device including a first antenna, a second antenna, a first transceiver configured to operate over a first range of frequencies, a second transceiver configured to operate over a second range of frequencies and a third range of frequencies. The portable communications device includes an isolator circuit coupling the first transceiver and the second transceiver to the first antenna and the second antenna. The isolator circuit is configured to provide isolation between the first transceiver and the second transceiver when the second transceiver is operating in the second range of frequencies. The portable communications device further includes a bidirectional diplexer coupling the second transceiver to the isolator circuit. The bidirectional diplexer is configured to reduce an electrical transmission length when the second transceiver is operating over the third range of frequencies.
Abstract:
Radio frequency architecture for reducing mutual interference between multiple wireless communication modalities. One embodiment provides a portable communications device including a housing and an RF antenna system including a first RF antenna, a second RF antenna, and a third RF antenna in the housing. The portable communications device includes an RF transceiver system including a first RF transceiver, a second RF transceiver, and a third RF transceiver operating in respective bands and an isolator circuit coupled to the RF antenna system and the RF transceiver system and configured to provide RF isolation between the first RF transceiver, the second RF transceiver, and the third RF transceiver. The isolator circuit includes an RF coupler featuring six RF coupler ports coupled to the first RF antenna, the second RF antenna, the third RF antenna, the first RF transceiver, the second RF transceiver, and the third RF transceiver through respective phasor shaping networks.
Abstract:
Portable communications devices with reduced interference between communication systems. One embodiment provides a portable communications device including a first antenna, a second antenna, a first transceiver configured to operate over a first range of frequencies, a second transceiver configured to operate over a second range of frequencies and a third range of frequencies. The portable communications device includes an isolator circuit coupling the first transceiver and the second transceiver to the first antenna and the second antenna. The isolator circuit is configured to provide isolation between the first transceiver and the second transceiver when the second transceiver is operating in the second range of frequencies. The portable communications device further includes a bidirectional diplexer coupling the second transceiver to the isolator circuit. The bidirectional diplexer is configured to reduce an electrical transmission length when the second transceiver is operating over the third range of frequencies.
Abstract:
An open waveguide antenna for a radio frequency identification reader includes a conductive annular waveguide concentric about an axis and configured for operation within an operating frequency band. A radiating slot is formed in at least one wall of the waveguide is also concentric about the axis. An odd-multiple of ports are electrically coupled to the annular waveguide, where the ports are equally spaced around the waveguide at a spacing between adjacent ports of one-half of a guided wavelength at a center frequency of the operating band. A second waveguide, smaller than the first, can also be incorporated. The second waveguide can have a different slot arrangement and fewer ports. The rectangular waveguides can operate in a non-transverse electromagnetic mode, and the ports can be individually driven to beamform the radiated signal of the antenna.
Abstract:
Methods and systems for mitigating interference between different transceivers in a portable communication device. An electronic control circuit is configured to quantify an electromagnetic isolation between a first transceiver of a portable communication and a second transceiver of the portable communication device based on a detected radio frequency power coupled to the first transceiver from radio frequency signals transmitted by the second transceiver. A mitigation action is selected from a plurality of mitigation actions based on a magnitude of the quantified electromagnetic isolation. The selected mitigation action is then applied to the second transceiver to adjust at least one radio frequency characteristic of the second transceiver.