Abstract:
Radio frequency architecture for reducing mutual interference between multiple wireless communication modalities. One embodiment provides a portable communications device including a housing and an RF antenna system including a first RF antenna, a second RF antenna, and a third RF antenna in the housing. The portable communications device includes an RF transceiver system including a first RF transceiver, a second RF transceiver, and a third RF transceiver operating in respective bands and an isolator circuit coupled to the RF antenna system and the RF transceiver system and configured to provide RF isolation between the first RF transceiver, the second RF transceiver, and the third RF transceiver. The isolator circuit includes an RF coupler featuring six RF coupler ports coupled to the first RF antenna, the second RF antenna, the third RF antenna, the first RF transceiver, the second RF transceiver, and the third RF transceiver through respective phasor shaping networks.
Abstract:
A passive radio-frequency redirector device is provided that includes: a polarized antenna configured to produce a radiation pattern in an azimuthal plane; and a directional antenna configured to produce a directional radiation pattern that is substantially complementary to the radiation pattern of the polarized antenna, wherein the directional radiation pattern is substantially cross-polarized relative to the radiation pattern of the polarized antenna, and the polarized antenna and the directional antenna are passively coupled together.
Abstract:
A system and method for wireless power transfer. The system includes a transmit coil having a first magnetic field having a first magnitude. The system also includes a receive coil, magnetically coupled to the transmit coil, having a second magnetic field having a second magnitude. The system also includes an electronic processor electrically coupled to the transmit coil and communicatively coupled to the receive coil. The electronic processor is configured to determine the first magnitude of the first magnetic field. The electronic processor is further configured to receive the second magnitude of the second magnetic field. The electronic processor is further configured to determine an efficiency based on the first magnitude and the second magnitude, and determine a power level for the transmit coil based on the efficiency.
Abstract:
An antenna system. The antenna system includes a central antenna, and a plurality of peripheral antennas positioned symmetrically around the central antenna. A first coupler provides a first radio connection and a second radio connection. A first 180 degree hybrid coupler is coupled to a first two diametrically opposed antennas of the plurality of peripheral antennas. A second 180 degree hybrid coupler is coupled to a second two diametrically opposed antennas of the plurality of peripheral antennas. A third 180 degree hybrid coupler coupled to the first and second 180 degree hybrid couplers, and having a third radio connection and a fourth radio connection. The first, second, third, and fourth radio connections are decoupled from each other, and the first, second, and third system radio connections are also decoupled from the central antenna.
Abstract:
A short, efficient antenna utilizing a floating coax transmission line over ground or overlapping wire feed structure for reduced antenna size for use in handheld radios. An asymmetric transmission line radiator having a length (LTL) is oriented substantially planar to and proximal to a truncated ground plane, and having at one end an input/output connector, and at an other end a feed point at least one of above a ground plane and proximal to its edge. An exciter antenna in a form of a plate or bent wire is coupled to the feed point and is exterior to the edge of the ground plane and oriented substantially orthogonal to the ground plane, the exciter antenna having a larger dimension length (LEA) that is at least 50% smaller than the length LTL. The overall length of a perimeter of the antenna is approximately ½ a wavelength of a center frequency of the antenna.
Abstract:
Systems and methods for dynamically updating and distributing digital reconnaissance maps for incident response. One example system includes an electronic processor coupled to an electronic communication interface. The processor is configured to receive an incident notification for an incident occurring at an incident scene and to generate a reconnaissance map for the incident scene. The processor is configured to receive a voice communication associated with a first incident responder at the incident scene and determine, for the first incident responder, a location within the incident scene. The processor is configured to determine a location status for the location based on the voice communication and to generate an updated reconnaissance map for the incident scene based on the reconnaissance map, the location, and the location status. The processor is configured to send, via the communication interface, the updated reconnaissance map to an electronic communication device associated with a second incident responder.
Abstract:
Systems and methods for dynamically updating and distributing digital reconnaissance maps for incident response. One example system includes an electronic processor coupled to an electronic communication interface. The processor is configured to receive an incident notification for an incident occurring at an incident scene and to generate a reconnaissance map for the incident scene. The processor is configured to receive a voice communication associated with a first incident responder at the incident scene and determine, for the first incident responder, a location within the incident scene. The processor is configured to determine a location status for the location based on the voice communication and to generate an updated reconnaissance map for the incident scene based on the reconnaissance map, the location, and the location status. The processor is configured to send, via the communication interface, the updated reconnaissance map to an electronic communication device associated with a second incident responder.
Abstract:
One example cloud-based electronic computing device includes and electronic processor and communicates over a wireless communication network with a User Equipment (UE) device. The electronic processor receives public safety incident information about a public safety incident from a public safety command center. The electronic processor receives metadata representing first gathered data from a location of the public safety incident from the UE device. The electronic processor may determine, based on the public safety incident information and the metadata, whether to process the first gathered data by a first UE device at the location of the public safety incident or by the electronic processor of the cloud-based electronic computing device.
Abstract:
A method to operate a controller for exchanging information corresponding to a public safety incident is provided. In operation, the controller transmits a request to communication networks to send location information for portable communication devices operating in a region of interest. The controller, based on the location information received from the communication networks for the portable communication devices, selects a subset of portable communication devices. The controller assigns each device in the subset to a trusted group of devices or a non-trusted group of devices based on the respective subscriber profile and operating characteristics of the portable communication devices. The controller then establishes a connection with high priority portable communication devices in the trusted group via a public safety communication network to exchange information corresponding to the incident.
Abstract:
A system and method for determining a microwave beam and a power setting for wireless power transfer within a volume with a beamforming antenna. The method includes determining a perimeter for the volume, and determining a transmit power threshold based on the perimeter. The method includes establishing a communication link with a mobile electronic device within the volume, and determining a position of the mobile electronic device. The method includes sensing whether a person is located within the volume, and, when a person is located within the volume, sensing a position of the person, determining a microwave beam based on the position of the mobile electronic device and the position of the person, and determining a power setting for the microwave beam based on the position of the mobile electronic device, the position of the person, the transmit power threshold, and a power density distribution for the microwave beam.