Abstract:
A memory device and a programming method thereof are provided. The memory device includes a memory array, a plurality of word lines and a voltage generator. During a programming procedure, one of the word lines is at a selected state and others of the word lines are at a deselected state. Some of the word lines, which are at the deselected state, are classified into a first group and a second group. The first group and the second group are respectively located at two sides of the word line, which is at the selected state. The voltage generator provides a programming voltage to the word line, which is at the select state, during a programming duration. The voltage generator provides a first two-stage voltage waveform to the word lines in the first group and provides a second two-stage voltage waveform to the word lines in the second group.
Abstract:
Methods and apparatuses are contemplated herein for reducing bit-line recovery time of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of non-volatile memory cells, including a plurality of blocks, each block comprising a plurality of NAND strings, each of the NAND strings coupled to a bit line and word lines, the word lines arranged orthogonally to the NAND strings and establishing the memory cells at cross-points between surfaces of the NAND strings and the word lines, and a first set of discharge transistors positioned at an edge of the 3D array, coupled to a corresponding bit line, and configured for BL discharge, and a second set of discharge transistors positioned such that a first portion of BL potential is discharged through the first set of discharge transistors and a second portion through the second set.
Abstract:
A non-volatile memory and a program method thereof are provided. The program method of the non-volatile memory includes: setting a first incremental value, and providing a plurality of first pulses of incrementally increasing voltages in sequence according to the first incremental value for performing a programming operation on a plurality of non-volatile memory cells during a first time period; and setting a second incremental value, and providing a plurality of second pulses of incrementally increasing voltages in sequence according to the second incremental value for performing a programming operation on the non-volatile memory cells during a second time period which is after the first time period, wherein the first incremental value is smaller than the second incremental value.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.
Abstract:
An erase-verify method for a three-dimensional (3D) memory and a memory system are provided. The 3D memory includes at least one memory cell string including a plurality of memory cells, and the memory cells include a first group of memory cells and a second group of memory cells. Each of the memory cells is coupled to a word line. The method comprises the following steps. A first erase-verify operation is performed on the first group of memory cells. After performing the first erase-verify operation on the first group of memory cells, a second erase-verify operation is performed on the second group of memory cells in condition that the first group of memory cells are verified as erased successfully.
Abstract:
Provided are methods, devices, and/or the like for reducing the bit line interference when programming non-volatile memory. One method comprises providing a non-volatile memory device comprising a set of cells, each cell associated with a bit line; shooting a programming voltage across each cell; detecting a threshold voltage for each cell; identifying a fast subset of the set of cells and a slow subset of the set of cells based at least in part on the detected threshold voltage for each cell; and shooting the programming voltage until the threshold voltage for each cell is greater than a verify voltage. For each shot a fast bit line bias is applied to the bit line associated each cell of the fast subset and a slow bit line bias is applied to the bit line associated with each cell of the slow subset.
Abstract:
Provided is an erase method for a multi-tier three-dimension (3D) memory including a plurality of tiers and a plurality of blocks, each of the tiers including a plurality of word lines. The erase method includes: in erasing a selected block among the plurality of blocks, in a current iteration, selecting at least one tier among the plurality of tiers to be erased by a first erase voltage; determining whether the at least one tier passes erase verification; and if the at least one tier passes erase verification, in a next iteration, inhibiting the at least tier which already passes erase verification from erase.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.