Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.
Abstract:
Methods and apparatuses are contemplated herein for reducing bit-line recovery time of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of non-volatile memory cells, including a plurality of blocks, each block comprising a plurality of NAND strings, each of the NAND strings coupled to a bit line and word lines, the word lines arranged orthogonally to the NAND strings and establishing the memory cells at cross-points between surfaces of the NAND strings and the word lines, and a first set of discharge transistors positioned at an edge of the 3D array, coupled to a corresponding bit line, and configured for BL discharge, and a second set of discharge transistors positioned such that a first portion of BL potential is discharged through the first set of discharge transistors and a second portion through the second set.
Abstract:
A method for programming a non-volatile memory and a memory system are provided. Each of multiple cells of the non-volatile memory stores data having at least 2 bits. The method includes the following steps. At least one programming pulse is provided for programming a target cell of the cells. At least one program-verify pulse is provided for verifying whether the target cell is successfully programmed. It is determined that whether a threshold voltage of the target cell is greater than or equal to a program-verify voltage. When the threshold voltage is greater than or equal to the program-verify voltage, the target cell is set as successfully programmed. Next, a post-verifying operation is performed to the successfully programmed cell. The post-verifying operation includes determining whether the threshold voltage of the target cell is greater than or equal to a post-verifying voltage.
Abstract:
A method, apparatus and computer program product are provided in order to test word line failure of a non-volatile memory device. An example of the method includes performing a failure screening of the non-volatile memory device, wherein the non-volatile memory device comprises one or more word lines; identifying a point of failure located between a first word line and a second word line; and marking the first word line and the second word line as a single word line in response to identifying the point of failure between the first word line and the second word line.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the efficiency of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a substrate and 3D array of nonvolatile memory cells, the 3D array including a plurality of conductive layers, separated from each other by insulating layers, the plurality of conductive layers comprising a top layer, the top layer comprising n string select lines (SSLs) and one or more bottom layers, the top layer further comprises n−1 cuts, each cut electrically separating two SSLs, wherein each cut is cut to a depth of the top layer and not extending into the bottom layers and a plurality of vertical channels arranged orthogonal to the plurality of layers, each of the plurality of channels comprising a string of memory cells, each of plurality of strings coupled to a bit line, an SSL and one or more word lines.
Abstract:
A three-dimensional memory, which includes memory cell stacked structures. The memory cell stacked structures are stacked by a plurality of memory cell array structures and insulation layers alternatively, and each memory cell array structure includes word lines, active layers, composite layers and sources/drains. The word lines, the active layers and the composite layers extend along a Y direction. The active layers are disposed between the adjacent word lines. The composite layers are disposed between the adjacent word lines and the adjacent active layers, and each composite layer includes a first dielectric layer, a charge storage layer and a second dielectric layer in sequence from the active layers. The sources/drains are disposed in the active layers at equal intervals. A memory cell includes two adjacent sources/drains, the active layer between the two adjacent sources/drains, the first dielectric layer, the charge storage layer and the second dielectric layer on the active layer, and the word lines.
Abstract:
A method for programming a non-volatile memory and a memory system are provided. Each of multiple cells of the non-volatile memory stores data having at least 2 bits. The method includes the following steps. At least one programming pulse is provided for programming a target cell of the cells. At least one program-verify pulse is provided for verifying whether the target cell is successfully programmed. It is determined that whether a threshold voltage of the target cell is greater than or equal to a program-verify voltage. When the threshold voltage is greater than or equal to the program-verify voltage, the target cell is set as successfully programmed. Next, a post-verifying operation is performed to the successfully programmed cell. The post-verifying operation includes determining whether the threshold voltage of the target cell is greater than or equal to a post-verifying voltage.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the program performance of nonvolatile memory devices. In an example embodiment, a nonvolatile memory device comprises a 3D array of nonvolatile memory cells including a plurality of layers, each layer comprising NAND strings of nonvolatile memory cells, the NAND strings coupled to a bit line, and a plurality SSLs and word lines, the SSLs and the word lines arranged orthogonally to the NAND strings, the word lines establishing the nonvolatile memory cells at cross-points between surfaces of the plurality of NAND strings and the word lines, each of the NAND strings further comprising a plurality of SSL transistors coupling the SSLs to the NAND strings, wherein at least a first SSL being configured to receive a first voltage and a second SSL configured to receive at second voltage, and wherein the second SSL being nearer to the word lines.
Abstract:
An integrated circuit comprises a memory array including diffusion bit lines having composite impurity profiles in a substrate. A plurality of word lines overlies channel regions in the substrate between the diffusion bit lines, with data storage structures such as floating gate structures or dielectric charge trapping structures, at the cross-points. The composite impurity diffusion bit lines provide source/drain terminals on opposing sides of the channel regions that have high conductivity, good depth and steep doping profiles, even with channel region critical dimensions below 50 nanometers.
Abstract:
Embodiments of the present invention provide improved three-dimensional memory cells, arrays, devices, and/or the like and associated methods. In one embodiment, a three-dimensional memory cell is provided. The three-dimensional memory cell comprises a first conductive layer; a third conductive layer spaced apart from the first conductive layer; a channel conductive layer connecting the first conductive layer and the third conductive layer to form an opening having internal surfaces; a dielectric layer disposed along the internal surfaces of the opening surrounded by the first conductive layer, the channel conductive layer and the third conductive layer; and a second conductive layer interposed and substantially filling a remaining open portion formed by the dielectric layer. The first conductive layer, the dielectric layer, and the second conductive layer are configured to form a staircase structure.