Abstract:
A boost circuit includes a power rail to provide a supply voltage, a switch transistor controlling output of a boosted signal from a source of the switch transistor, and a timing and voltage control circuit configured to generate an equalization (EQ) signal to be applied to a gate of the switch transistor. The EQ waveform has a level being an EQ high level, an EQ low level lower than the EQ high level, or an EQ clamped level between the EQ low level and the EQ high level.
Abstract:
A flash memory device includes a memory string, a selection switch, a first power source and a second power source. The memory string has a plurality of memory cells. A first memory cell in the memory string is coupled to a first word line, and the first word line is selected to be a programmed word line and the first memory cell is selected to be an inhibited cell, during a first time period, the selection switch is turned on according to a selection signal, and the first power source pulls up voltages on the global bit line and the local bit line to a first voltage. During a second time period, the selection switch is turned-off according to the selection signal, a word line voltage on the first word line is pulled up to pump up the voltage on the local bit line to a second voltage.
Abstract:
A boost circuit includes a power rail to provide a supply voltage, a switch transistor controlling output of a boosted signal from a source of the switch transistor, and a timing and voltage control circuit configured to generate an equalization (EQ) signal to be applied to a gate of the switch transistor. The EQ waveform has a level being an EQ high level, an EQ low level lower than the EQ high level, or an EQ clamped level between the EQ low level and the EQ high level.
Abstract:
Methods, systems and apparatus for managing capacitors in memory devices, e.g., three-dimensional (3D) memory devices are provided. In one aspect, a capacitor includes: a first terminal, a second terminal conductively insulated from the first terminal, and a capacitance structure that includes a plurality of layers sequentially stacked together. At least one layer includes: one or more first conductive parts and one or more second conductive parts that are conductively insulated in the layer, the one or more first conductive parts being conductively coupled to the first terminal, the one or more second conductive parts being conductively coupled to the second terminal. The at least one layer is configured such that at least one of the one or more second conductive parts forms at least one subordinate capacitor with at least one adjacent first conductive part.
Abstract:
A power supply apparatus and a method for supplying power are provided. The method includes: providing a first power supply for outputting a first power signal; providing a second power supply for outputting a second power signal; and selectively charging the second power supply by using the first power supply.
Abstract:
A power supply apparatus and a method for supplying power are provided. The method includes: providing a first power supply for outputting a first power signal; providing a second first power supply for outputting a second power signal; and selectively charging the second power supply by using the first power supply.
Abstract:
A method is described for performing an automatic internal trimming operation that can compensate process variation and supply voltage variation in an integrated circuit. A reference signal is applied when the integrated circuit is in an automatic internal trimming mode, and integrated circuit timing is trimmed into a predetermined target range after applying predefined reference cycles.
Abstract:
Methods, systems and apparatus for managing capacitors in memory devices, e.g., three-dimensional (3D) memory devices are provided. In one aspect, a capacitor includes: a first terminal, a second terminal conductively insulated from the first terminal, and a capacitance structure that includes a plurality of layers sequentially stacked together. At least one layer includes: one or more first conductive parts and one or more second conductive parts that are conductively insulated in the layer, the one or more first conductive parts being conductively coupled to the first terminal, the one or more second conductive parts being conductively coupled to the second terminal. The at least one layer is configured such that at least one of the one or more second conductive parts forms at least one subordinate capacitor with at least one adjacent first conductive part.
Abstract:
A flash memory device includes a memory string, a selection switch, a first power source and a second power source. The memory string has a plurality of memory cells. A first memory cell in the memory string is coupled to a first word line, and the first word line is selected to be a programmed word line and the first memory cell is selected to be an inhibited cell, during a first time period, the selection switch is turned on according to a selection signal, and the first power source pulls up voltages on the global bit line and the local bit line to a first voltage. During a second time period, the selection switch is turned-off according to the selection signal, a word line voltage on the first word line is pulled up to pump up the voltage on the local bit line to a second voltage.
Abstract:
A boost circuit includes a power rail to provide a supply voltage, a switch transistor controlling output of a boosted signal from a source of the switch transistor, and a timing and voltage control circuit configured to generate an equalization (EQ) signal to be applied to a gate of the switch transistor. The EQ waveform has a level being an EQ high level, an EQ low level lower than the EQ high level, or an EQ clamped level between the EQ low level and the EQ high level.