摘要:
A location of a sensor is determined by: (1) receiving time series data including components in a plurality of dimensions, wherein the time series data correspond to measurements of the sensor that is applied to a subject; (2) determining a plurality of subsequences associated with the time series data, wherein each of the plurality of subsequences represents a characteristic pattern projected along one of the plurality of dimensions; (3) identifying a correlated subset of the plurality of subsequences as at least one instance of an activity of the subject; and (4) based on features of the correlated subset, determining the location of the sensor as applied to the subject.
摘要:
A location of a sensor is determined by: (1) receiving time series data including components in a plurality of dimensions, wherein the time series data correspond to measurements of the sensor that is applied to a subject; (2) determining a plurality of subsequences associated with the time series data, wherein each of the plurality of subsequences represents a characteristic pattern projected along one of the plurality of dimensions; (3) identifying a correlated subset of the plurality of subsequences as at least one instance of an activity of the subject; and (4) based on features of the correlated subset, determining the location of the sensor as applied to the subject.
摘要:
Systems and methods are disclosed that use wireless coupling of energy for operation of both external and internal devices, including external sensor arrays and implantable devices. The signals conveyed may be electronic, optical, acoustic, biomechanical, and others to provide in situ sensing and monitoring of internal anatomies and implants using a wireless, biocompatible electromagnetic powered sensor systems.
摘要:
A method for design optimization using logical and physical information is provided. In one embodiment, a method for design optimization using logical and physical information, includes receiving a behavioral description of an integrated circuit or a portion of an integrated circuit, optimizing placement of circuit elements in accordance with a first cost function, and optimizing logic of the circuit elements in accordance with a second cost function, in which the optimizing placement of the circuit elements and the optimizing logic of the circuit elements are performed concurrently. The method can further include optimizing routing in accordance with a third cost function, in which the optimizing routing, the optimizing placement of the circuit elements, and the optimizing logic of the circuit elements are performed concurrently.
摘要:
Monitoring and rewarding of physical activity are carried out by: (1) receiving a measurement of a physical activity from a sensor; (2) processing the measurement of the physical activity to derive a valid extent of the physical activity; and (3) controlling an entertainment device based on the valid extent of the physical activity.
摘要:
The present invention, generally speaking, provides a placement method for the physical design of integrated circuits in which natural topological feature clusters (topo-clusters) are discovered and exploited during the placement process. Initial placement and placement refinement may be performed hierarchically using topocluster trees. A topocluster tree may be used to drive initial placement. An iterative placement refinement process then follows, using a technique referred to herein as Geometrically-Bounded FM (GBFM). In GBFM, FM is applied on a local basis to windows encompassing some number of bins. From iteration to iteration, windows may shift position and vary in size. When a region bounded by a window meets a specified cost threshold in terms of a specified cost function, that region does not participate. The cost function takes account of actual physical metrics-delay, area, congestion, power, etc. During placement refinement using GBFM, cluster size is adjusted iteratively from large to small as determined by horizontal cuts within the topocluster tree. GBFM occurs in the context of recursive quadrisection. Hence, after GBFM has been completed, a further quadrisection step is performed in which each bin is divided into four bins, with a quarter of the gates of the original bin being placed in the center of each of the resulting bins. GBFM then follows, and the cycle repeats until each bin contains a fairly small number of gates. Topocluster trees may also be used for quadrisection. Following the foregoing global placement process, the circuit is then ready for detailed placement in which cells are assigned to placement rows.
摘要:
The disclosure describes a placement method for the physical design of integrated circuits in which natural topological feature clusters are discovered and exploited during the placement process is disclosed. Topo-clusters drive initial placement, with all of the gates of a topo-cluster being placed initially in a single bin of the placement layout or within a group of positionally-related bins. An iterative placement refinement process is done using a technique referred to as Dual Geometrically-Bounded FM (GBFM). GBFM is applied on a local basis to windows encompassing a number of bins. From iteration to iteration, windows may shift position and vary in size. When a region bounded by a window meets a specified cost threshold in terms of a specified cost function, that region stops participating. Following the foregoing global placement process the circuit is then ready for detailed placement in which cells are assigned to placement rows.
摘要:
A saliency function is computed to indicate the saliency of each of a plurality of data points in a dataset. For each local maximum in the saliency function, a segment of the dataset is inserted into an index.
摘要:
The present invention relates to methods and apparatus for quantitative assessment of neuromotor disorders using sensors and analyzing the data collected from the sensors to determine if a patient suffers any neuromotor disorders. In one embodiment, the present invention is a system for assessing neuromotor disorders in a body including a plurality of pressure sensors adapted for attachment to the body and measuring pressure, a med node connected to the plurality of pressure sensors for generating data corresponding to the plurality of pressure sensors, and an analysis unit connected to the med node for analyzing the data generated by the med node to determine the existence of a neuromotor disorder in the body.
摘要:
Congestive heart failure (CHF) is a leading cause of death in the United States. WANDA is a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with CHF. The first pilot study of WANDA showed the system's effectiveness for patients with CHF. However, WANDA experienced a considerable amount of missing data due to system misuse, nonuse, and failure. Missing data is highly undesirable as automated alarms may fail to notify healthcare professionals of potentially dangerous patient conditions. Embodiments of the present disclosure may utilize machine learning techniques including projection adjustment by contribution estimation regression (PACE), Bayesian methods, and voting feature interval (VFI) algorithms to predict both non-binomial and binomial data. The experimental results show that the aforementioned algorithms are superior to other methods with high accuracy and recall.