摘要:
An uppermost metal wiring layer is formed of titan Ti and titan nitride TiN formed thereon, on which tungsten W for filling a via hole can be deposited. The via hole is filled with W. The surface of a metal wiring layer below the uppermost metal wiring layer is covered with a low reflectivity film made of titan nitride. Thus, light incident on the surface of the semiconductor chip is prevented from reaching a substrate transistor within a semiconductor device and malfunctioning of the semiconductor device is prevented.
摘要:
A method for manufacturing semiconductor device is provided, this method comprises the steps of: depositing a metal film for forming wirings on a substrate; forming a wiring layer, wherein dummy wiring is inserted between wiring space where the dummy wiring can be inserted, and wiring space, where the dummy wiring cannot be inserted, is reduced by widening wiring pattern facing the wiring space; forming an interlayer insulating film on said wiring layer; and flattening surface of the interlayer insulating film. The film can be flattened by a CMP method or by an etchback of entire surface of the film. It is possible to flatten the surface of the semiconductor device cost-effectively and precisely.
摘要:
A liquid crystal display device has a semiconductor substrate. A plurality of switching elements are arranged on the substrate in matrix, and a plurality of pixel electrodes are provided above the switching elements, arranged in matrix corresponding to the switching elements. A liquid crystal layer is provided on the pixel electrodes. The switching element is connected with a corresponding pixel electrode by a wiring layer. Dummy layers are provided in the same level as the wiring layer so that a surface of the dummy layer is substantially flush with a surface of the wiring layer.
摘要:
The number of vertical scanning in one field of a video signal is detected, and the number of scanning lines pulses at each row electrode of a liquid crystal display is determined in accordance with the difference between the determined number of vertical scanning lines number and the number of the row electrodes. The determined number of scanning pulses is stored in a retrace line interval. Scanning pulses are applied to the corresponding row electrode in a scanning interval. The number of row electrodes to which the scanning pulses are applied is the stored number of scanning pulses.