摘要:
An imaging system for use with an endoscope, including a light source which emits white light and excitation light which will produce a fluorescence response by an object under inspection, an imaging camera including separate paths for processing images produced by white light and excitation light, a selection device that causes the imaging device to operate in a white light mode or an excitation light mode, and a protective device that prevents damage to high-sensitivity imaging components from exposure to excessive light input. Fluorescent image data are separated into at least red and green color bands which are separately processed to produced a video display in which normal tissue is displayed in predetermined specific color, and abnormal tissue in one or more distinctly different colors. In one embodiment, an image color interpretation guide is provided in the form of multiple color bars which are superimposed on a single video display device with the image display. of different kinds. In another embodiment, color control is provided by adjusting the amplification of the imaging components for each of the color bands while viewing tissue known to be normal using a recursive algorithm until the ratio of the maximum values of the color separation signals fall within a predetermined range. The high-sensitivity imaging components are protected by controlling impingement of light on the imagining components, selectively controlling emission of white and excitation light from the light source, and controlling the power source for the imaging components.
摘要:
A fluorescent imaging device to prevent the breakdown of a fluorescent image high-sensitivity imaging apparatus has a light source for endoscope use which selectively switches between an excitation light and a white light. This introduces a light into a light guide of an endoscope and such light is emitted onto an object. A fluorescent image high-sensitivity imaging device images the fluorescences obtained by excitation with the excitation light which is emitted onto the object. A white light imaging device images a white light image obtained from the white light which is emitted onto the object. A switch inputs a power source onto the fluorescent image high-sensitivity imaging apparatus and there is a mechanism to prevent overprint on an image plane of the fluorescent image high-sensitivity imaging apparatus which is in the imaging condition with the power source inputted. A fluorescent observation image generating device generates a fluorescent observation image signal for fluorescent observation use, and outputted from the fluorescent image high-sensitivity imaging measure of the imaging part is in electric signal from; which a white light observation image signal used for white light observation is derived.
摘要:
At the tip of an insertion part of an endoscope, an object window for regular observation use is positioned at almost the center, directly connected to which, said object window for fluorescent observation use is provided, and at the both sides of the object window for regular observation use and the object window for fluorescent observation use, two illumination windows are provided. A forceps hole which is an opening part at the tip side of a forceps channel which is inserted into the insertion part is provided at the lower right of the object window for regular observation use, and a treatment tool which is inserted through a forceps insertion channel is to be extruded from this forceps hole. By this way, on monitor images at both of white light observation and fluorescent observation, the treatment tool such as a forceps or the like is designated at almost the same position to improve the manipulation capability.
摘要:
An endoscope system in accordance with an embodiment of the present invention includes an endoscope with a monochrome image pickup device for capturing reflected light and fluorescence from the body cavity, an excitation light cut filter which is installed in front of the image pickup device for shielding excitation light, and an endoscope ID which includes information on the type of the endoscope. A light source unit includes a first switching filter that irradiates light including excitation light for a fluorescent image mode and a filter for generating continuous light for a normal-light image mode. The filters switch based between the fluorescent image mode and the normal-light image mode. A second switching filter with a limiting filter that limits certain wavelengths of excitation light of the first switching filter is provided. The limiting filters are switched according to the endoscope ID or observation state in the fluorescence mode. The excitation light cut filter shields excitation light generated by the first and second filters.
摘要:
A low coherence beam emitted by a low coherence light source is split into two portions. One portion is transmitted from the outward end of a first single mode fiber via a detachable connector to a beam scanning probe, and then to a biological tissue; and the other is transmitted from an optical coupler placed midway along the light path via a second single mode fiber to a light path modifier. The light path modifier includes a galvanometer mirror to modify the light path length in accordance with a scan range, and a uniaxial stage to adjust the light path length to absorb the variation in lengths of different beam scanning probes. The light path is adjusted by the uniaxial stage such that the beam interference is detected for the scan range, to ensure stable acquisition of tomographic images.
摘要:
In the light source unit 3A, a switching filter section 14, which can switch the RGB filter for normal-light observation and a filter for fluorescent observation on the optical path, is installed in front of the lamp 12, where if the fluorescent image mode is selected, the excitation light in a part of the blue wavelength band is supplied to the electronic endoscope 2A, and the excitation light reflected by the subject side is shielded by the excitation light cut filter 27 in front of the CCD 28 so as to obtain the fluorescent image, and also the signal of the fluorescent image and the signals of the two reflected light images which are set in a predetermined wavelength band are passed through the image processing circuit 38, where a matrix circuit for appropriately allocating the color signals of the R, G and B channels is installed, and as a result, the images can be displayed on the monitor 5 in pseudo-colors in hues which allow easy identification of a normal tissue and a pathologically affected tissue.
摘要:
A light scanning device has a tip structure which includes a light scanning part connected to a light source, and which is insertable into a body cavity and is formed so as to be water-tight. A controlling part controls the light scan through the tip structure, and the tip structure and the controlling part are also connected to each other in a water-tight manner by a slender tube through which a plurality of electrical cables pass. An electric connector is fixed with the proximal end portion of the tube in a water-tight manner, and is electrically connectable so as to be water-tight with and removable from this controlling part.
摘要:
An endoscope system includes a light source for supplying three narrow wavelength bands including one wavelength band for exciting fluorescence, an excitation light cut filter for transmitting light having a wavelength greater than either 470 nm or 490 nm, and an image capturing unit for capturing the light transmitted by the excitation light cut filter and outputting three wavelength band signals corresponding to the three narrow wavelength bands of the light source. Also included are first, second and third frame memories for inputting and storing the three wavelength band signals, respectively, and first, second and third output ends for outputting first, second and third color signals, respectively, to a monitor for displaying an image. An image processor receives signals from the first, second and third frame memories respectively and selects among the first output end, the second output end and third output end for outputting the received signals to the monitor.
摘要:
An image processing device for an endoscope, wherein a wavelength band filter for shielding at least a part of the blue wavelength band is disposed in front of an image pickup element built into the endoscope, for image processing the signal output by said image pickup element includes means for generating color image signals whilst switching between a normal-light image mode using white light and a fluorescence image mode including fluorescence information and adjusting means for adjusting the gain of a prescribed color signal of said color image signals.
摘要:
In a light source unit, a switchable filter section in which an RGB filter and a fluorescence observation filter can be shifted into the light path is disposed in front of a lamp. When fluorescence image mode is selected, excitation light in a part of the wavelength band of the blue wavelength band is supplied to an electronic endoscope, and the excitation light which is reflected by the subject is shielded by an excitation light shielding filter situated in front of a CCD, whereby a fluorescence image can be obtained. On the other hand, if normal-light image mode is selected, then R, G, B light is supplied sequentially, and even under illumination of B light, the color component image in the wavelength bands which are not shielded by the excitation light shielding filter are captured, thereby yielding a normal-light image also, and hence making it possible to capture both a fluorescence image and a normal-light image by means of a single image pickup element.