摘要:
A frequency correction device for a spread-spectrum communication receiver requiring no high-accuracy, high-stable VCO as a local signal oscillator. It includes a quasi-coherent quadrature detector detecting an intermediate frequency signal using a local signal from a fixed frequency local oscillator, a correlation detector producing a despread signal by demodulating the output of the detector, a clock signal generating portion generating a pair of clock signals whose frequency is deviated a little with respect to a clock signal for driving the correlation detector. The pair of clock signals are used to drive two correlation detectors, and the amplitude of the outputs of the correlation detectors are squared, and then subtracted, thereby generating a correlation output error signal. Since the correlation output error signal has one to one correspondence with the frequency difference between the chip frequency of the spread spectrum signal outputted from the quasi-coherent quadrature detector and the frequency of the clock signal, a frequency correction signal can be generated by converting the correlation output error signal into the frequency error. The frequency difference between despread signal and the clock signal, which arises from the difference between the center frequency of a received signal and the local signal, can be corrected by correcting the frequency of the despread signal by the frequency correction signal.
摘要:
A communication apparatus is disclosed which is capable of measuring levels of carrier signals used in adjacent zones during telecommunication with a small circuit scale, and capable of simultaneously transmitting/receiving to FDMA-system signals through a plurality of communication channels. All of transmission signals received through the communication channels under use are wholly converted into an intermediate signal by a mixer. The intermediate signal is quadrature-detected and then A/D-converted into digital I/Q-channel signals by A/D-converters. Thereafter, the digital I/Q-channel signals are frequency-converted by frequency converting circuits in such a manner that center frequencies of these I/Q-channel signals become zero, two sets of I/Q-channel signals may be demodulated by two sets of demodulating circuits. Otherwise, one of these I/Q-channel signals is demodulated by a single demodulating circuit, and the other is level-detected by a level detecting circuit.
摘要:
A transmission power control method is disclosed for controlling transmission power of radio communications in a CDMA system. The transmission power of a first transmitted signal transmitted from a first station is determined by a transmission power control signal contained in a second transmitted signal sent from a second station. The first station receives the second transmitted signal in the form of convolutional codes, and decodes it by using a first Viterbi decoder and a second Viterbi decoder. The first and second Viterbi decoders includes path memories with the path history length of different first predetermined lengths. The transmission power control signal contained in the second transmitted signal is extracted from the output of the second Viterbi decoder, whereas the other information data is obtained from the output of the first Viterbi decoder. The first station controls the transmission power of the first transmitted signal on the basis of the extracted transmission power control signal.
摘要:
A correlation detector is provided which can establish initial acquisition quickly, and achieve high accuracy tracking by extracting crosscorrelation components in a receiver for CDMA communication, and a communication system using the correlation detector is also provided. During the initial acquisition, a received signal 21 is supplied to a matched filter 43. When an acquisition decision circuit 45 decides that the matched filter 43 detects the acquisition, it controls a switching circuit 42 to supply the received signal 21 to multipliers 47 and 48, and resets a VCCG 29 and a spreading code replica generator 30. After establishing the acquisition, a received spreading code is quasicoherent detected, and the detected spread signal is multiplied by a phase advanced replica and a phase retarded replica. Correlation detection signals are produced from the products, and squared components of the correlation detected signals are generated, summed in the opposite phase, and averaged along the time axis. The averaged signal is inversely modulated by a decision signal of received data to obtain a phase error signal, the decision signal being obtained by multiplying the received spread signal by a replica in synchronism with the received spread sinal, and by integrating the product over a plurality of chips to compensate for a receive phase error. The replica generator is driven by a clock signal whose phase is controlled by the phase error signal.
摘要:
A transmission power control method of a spread-spectrum communication system which determines transmission power in accordance with a transmission power control bit. The transmission power control bit is extracted at a base station from a signal sequence obtained by receiving a signal transmitted from a mobile station, and by despreading and demodulating the received signal. When the same value of the transmission power control bit is consecutively received, the transmission power of the base station is controlled in accordance with transmission power control quantities which are predetermined in accordance with the consecutive number of receptions of the same value of the transmission power control bit. This is because the consecutive receptions of the same value of the transmission power control bit suggests that the received power of the other party (the mobile station in this case) changes greatly. Thus, an amount of an increment or a decrement in the transmission power is increased with the duration of the consecutive receptions. This makes it possible for the transmission power control to follow sudden changes in propagation paths.
摘要:
A spread spectrum communication receiver which can obviate a highly accurate, highly stable VCO used in a local signal oscillator. The receiver includes a corrector for correcting by a correcting signal a baseband signal obtained by spectrum despreading; a RAKE circuit for recovering information by demodulating corrected baseband signal; a remodulator for remodulating the demodulated signal outputted from the RAKE circuit, thereby generating a signal corresponding to a primary modulated signal at a transmitter; a multiplier for multiplying the baseband signal by the complex conjugate of the output of the remodulator; an averaging circuit for averaging the output of the multiplier to eliminate noise components of the baseband signal, thereby outputting only frequency offset component of the received signal and the local signal; and a circuit for producing a correcting signal with an angular velocity obtained from said frequency offset component and a polarity opposite to that of the baseband signal, thereby eliminating the frequency offset component by the corrector.
摘要:
A CDMA communications method capable of multiplex transmission of data over a wide range from a low rate to high rate such as image data without a considerable increase in a circuit scale. A fundamental transmission rate is determined, for example, at 32 kbps, a rate higher than 8 kbps conventionally used. The data whose transmission rate is equal to the fundamental transmission rate is transmitted in frames including no vacant portion. Data whose transmission rate is lower than the fundamental transmission rate (16 kbps, for example) is transmitted in frames including vacant portions. The vacant portions are not transmitted. This makes it possible to receive data through other channels during a time period associated with the vacant portions. Data of a higher transmission rate, 128 kbps, for example, can be multiplexed and transmitted through four channels using different spreading codes.
摘要:
An SIR measuring apparatus with a simple configuration capable of improving the accuracy of received SIR measurement in CDMA mobile radio equipment using pilot symbols. A received signal (20) is input to a synchronization detector (21) that regenerates the clock timing of symbols and frame timing equivalent to the repetition period of the pilot signal. An interpolating coherent detector (22) produces information symbols (23) obtained from the received signal (20) through absolute phase coherent detection. A decision signal power calculator (24) obtains desired wave power values. A quasi-interference power calculator (25) obtains differences between the power values of the information symbols and a fading envelope, and adopts the differences as the quasi-interference power. Integrators (26 and 27) integrate received desired wave power and quasi-interference wave power. An SIR measuring portion (28) divides an averaged received desired wave power integral by an averaged quasi-interference power integral to obtain the received SIR (29).
摘要:
The phase of a received signal is detected by a phase detector at symbol intervals T relative to the phase of a local signal. The detected phase is input to delay circuits that are connected in series and each of which has the delay interval T. Phases .PSI..sub.n (where n=0, 1, . . . , N) with delays of 1 to N symbols are output to a metric calculating portion. The sum of a partial sequence {.DELTA..phi..sub.i ; i=n+1-q, n+2-q, . . . , n} of a N-symbol phase difference sequence candidate {.DELTA..phi..sub.n ; n=0, 1, . . . , N} is added to a detected phase .PSI..sub.n-q at a time point (n-q)T (where q=1, 2, . . . , N) so as to obtain an estimated value of the received signal phase .PSI..sub.n. The v-th power value of the absolute value of a difference .mu..sub.n (q) between the estimated value and the received signal phase is defined as a branch metric of q-symbol differential phase detection. .SIGMA..vertline..mu..sub.n (q).vertline..sup.v =.lambda..sub.n, which the summation of metrics from q=1 to n, is defined as a branch metric at the time point nT. A path metric .LAMBDA.=.SIGMA..lambda..sub.n, which is the summation of branch metrics from a time point 1T to a time point NT, is calculated for all N-symbol phase difference candidates. A candidate sequence with a minimum value is decided as a decoded sequence.
摘要:
An error rate of received signal is measured by a received signal error measuring unit 32, and a target SIR is changed by a target SIR decision unit using the error rate. It is also possible to detect error rate of received signal in an unit of frame using a CRC signal of a frame. It is further possible to detect error rate of received signal by detecting errors of known pilot signals inserted in a constant interval.