摘要:
An optical element for use in an illumination optical unit of an EUV microlithography projection exposure apparatus includes a plurality of reflective facet elements. Each reflective facet element has at least one reflective surface. In this case, at least one facet element is arranged in a manner rotatable about a rotation axis. The rotation axis intersects the at least one reflective surface of the facet element. With such an optical element, it is possible to alter the direction and/or the intensity of at least part of the illumination radiation within the illumination optical unit in a simple manner.
摘要:
An optical element for use in an illumination optical unit of an EUV microlithography projection exposure apparatus includes a plurality of reflective facet elements. Each reflective facet element has at least one reflective surface. In this case, at least one facet element is arranged in a manner rotatable about a rotation axis. The rotation axis intersects the at least one reflective surface of the facet element. With such an optical element, it is possible to alter the direction and/or the intensity of at least part of the illumination radiation within the illumination optical unit in a simple manner.
摘要:
An illumination optics for EUV microlithography guides an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1. A field facet mirror has a plurality of field facets that set defined illumination conditions in the object field. A following optics downstream of the field facet mirror transmits the illumination light into the object field. The following optics includes a pupil facet mirror with a plurality of pupil facets. The field facets are in each case individually allocated to the pupil facets so that portions of the illumination light bundle impinging upon in each case one of the field facets are guided on to the object field via the associated pupil facet. The field facet mirror not only includes a plurality of basic illumination field facets which provide a basic illumination of the object field via associated basic illumination pupil facets, but also includes a plurality of correction illumination field facets which provide for a correction of the illumination of the object field via associated correction illumination pupil facets. The result is an illumination optics which allows unwanted variations of illumination parameters, for instance an illumination intensity distribution or an illumination angle distribution, to be corrected across the object field.
摘要:
Illumination optics for EUV microlithography guide an illumination light bundle from a radiation source to an object field with an extension ratio between a longer field dimension and a shorter field dimension, where the ratio is considerably greater than 1.
摘要:
An illumination system for EUV microlithography includes an EUV light source which generates EUV illumination light with an etendue that is higher than 0.01 mm2. The EUV light source generates a sequence of EUV light pulses having a pulse sequence frequency. An illumination optics of the illumination system is used to guide the illumination light from the light source to an object field. At least one optical modulation component of the illumination system is preferably modulatable synchronously with the pulse sequence frequency. The result is an illumination system where a homogeneity of an object field illumination is improved.
摘要:
An illumination system for EUV microlithography includes an EUV light source which generates EUV illumination light with an etendue that is higher than 0.01 mm2. The EUV light source generates a sequence of EUV light pulses having a pulse sequence frequency. An illumination optics of the illumination system is used to guide the illumination light from the light source to an object field. At least one optical modulation component of the illumination system is preferably modulatable synchronously with the pulse sequence frequency. The result is an illumination system where a homogeneity of an object field illumination is improved.
摘要:
An illumination optical unit for EUV microlithography includes a first optical element having a plurality of first reflective facet elements and a second optical element having a plurality of second reflective facet elements. Each first reflective facet element from the plurality of the first reflective facet elements has a respective maximum number of different positions which defines a set—associated with the first facet element—consisting of second reflective facet elements in that the set consists of all second facet elements onto which the first facet element directs radiation in its different positions during the operation of the illumination optical unit. The plurality of second reflective facet element forms a plurality of disjoint groups, wherein each of the groups and each of the sets contain at least two second facet elements, and there are no two second facet elements of a set which belong to the same group. This construction makes it possible to provide an illumination optical unit which can be used to provide a large number of different angle-dependent intensity distributions at the location of the object field.
摘要:
An illumination optical unit for EUV microlithography includes a first optical element having a plurality of first reflective facet elements and a second optical element having a plurality of second reflective facet elements. Each first reflective facet element from the plurality of the first reflective facet elements has a respective maximum number of different positions which defines a set—associated with the first facet element—consisting of second reflective facet elements in that the set consists of all second facet elements onto which the first facet element directs radiation in its different positions during the operation of the illumination optical unit. The plurality of second reflective facet element forms a plurality of disjoint groups, wherein each of the groups and each of the sets contain at least two second facet elements, and there are no two second facet elements of a set which belong to the same group. This construction makes it possible to provide an illumination optical unit which can be used to provide a large number of different angle-dependent intensity distributions at the location of the object field.
摘要:
A field facet mirror for an illumination optics of a projection exposure apparatus for EUV microlithography transmits a structure of an object arranged in an object field into an image field. The field facet mirror has a plurality of field facets with reflection surfaces. The arrangement of the field facets next to one another spans a base plane. Projections of the reflection surfaces of at least two of the field facets onto the base plane differ with respect to at least one of the following parameters: size, shape, orientation. A field facet mirror results which can ensure a uniform object field illumination with a simultaneously high EUV throughput.
摘要:
A projection exposure apparatus for microlithography has an illumination system with an EUV light source and an illumination optical unit to expose an object field in an object plane. A projection optical unit images the object field into an image field in an image plane. A pupil facet mirror in a plane of the illumination optical unit that coincides with a pupil plane of the projection optical unit or that is optically conjugate with respect thereto has a plurality of individual facets on which illumination light can impinge. A correction diaphragm is in or adjacent to a pupil plane of the projection optical unit or in a conjugate plane with respect thereto. The correction diaphragm screens the illumination of the entrance pupil of the projection optical unit so that at least some source images assigned to the individual facets of the pupil facet mirror in the entrance pupil of the projection optical unit are partly shaded by one and the same diaphragm edge. The form of the diaphragm edge is predefined for the partial shading of the source images assigned to the pupil facets in the entrance pupil of the projection optical unit for the correction of the telecentricity and the ellipticity of the illumination.