Abstract:
A polymer additive for improving the reheat characteristics of a polymer or polymeric composition comprises an inorganic material which is such that a 2.5 mm thick polyethylene terephthalate plaque incorporating the inorganic material has, when tested, an absorption ratio of less than 0.9, wherein the absorption ratio is either the ratio of A1/A2 or the ratio A1/A3, wherein: A1 is the maximum absorption between 400 nm and 550 nm; A2 is the maximum absorption between 700 to 1100 nm; A3 is the maximum absorption between 700 to 1600 nm. Preferred inorganic materials are titanium nitride, indium tin oxide and lanthanum hexaboride.
Abstract:
Polymer compositions, for example of polyethyleneterephthalate bottles or preforms, include a reheat additive which has reducing transmission/increasing absorbance across the IR region as the wavelength increases. The reheat additive may be a titanium nitride, made by a plasma vapour deposition technique. Advantageously, the material may be used at a lower level than hitherto known materials or may be used at the same levels as hitherto but provide a greater reheat effect. Example 3a shown in the figure illustrates the absorbance of a preferred material.
Abstract:
A polymer additive for improving the reheat characteristics of a polymer or polymeric composition comprises an inorganic material which is such that a 2.5 mm thick polyethylene terephthalate plaque incorporating the inorganic material has, when tested, an absorption ratio of less than 0.9, wherein the absorption ratio is either the ratio of A1/A2 or the ratio A1/A3, wherein: A1 is the maximum absorption between 400 nm and 550 nm; A2 is the maximum absorption between 700 to 1100 nm; A3 is the maximum absorption between 700 to 1600 nm. Preferred inorganic materials are titanium nitride, indium tin oxide and lanthanum hexaboride.
Abstract:
A polymer additive for improving the reheat characteristics of a polymer or polymeric composition comprises an inorganic material which is such that a 2.5 mm thick polyethylene terephthalate plaque incorporating the inorganic material has, when tested, an absorption ratio of less than 0.9, wherein the absorption ratio is either the ratio of A1/A2 or the ratio A1/A3, wherein: A1 is the maximum absorption between 400 nm and 550 nm; A2 is the maximum absorption between 700 to 1100 nm; A3 is the maximum absorption between 700 to 1600 nm. Preferred inorganic materials are titanium nitride, indium tin oxide and lanthanum hexaboride.
Abstract:
A polymer additive for improving the reheat characteristics of a polymer or polymeric composition comprises an inorganic material which is such that a 2.5 mm thick polyethylene terephthalate plaque incorporating the inorganic material has, when tested, an absorption ratio of less than 0.9, wherein the absorption ratio is either the ratio of A1/A2 or the ratio A1/A3, wherein: A1 is the maximum absorption between 400 nm and 550 nm; A2 is the maximum absorption between 700 to 1100 nm; A3 is the maximum absorption between 700 to 1600 nm. Preferred inorganic materials are titanium nitride, indium tin oxide and lanthanum hexaboride.
Abstract:
Polymer compositions, for example of polyethyleneterephthalate bottles or preforms, include a reheat additive which has reducing transmission/increasing absorbance across the IR region as the wavelength increases. The reheat additive may be a titanium nitride, made by a plasma vapor deposition technique. Advantageously, the material may be used at a lower level than hitherto known materials or may be used at the same levels as hitherto but provide a greater reheat effect. Example 3a shown in the figure illustrates the absorbance of a preferred material.
Abstract:
A polymer additive for improving the reheat characteristics of a polymer or polymeric composition comprises an inorganic material which is such that a 2.5 mm thick polyethylene terephthalate plaque incorporating the inorganic material has, when tested, an absorption ratio of less than 0.9, wherein the absorption ratio is either the ratio of A1/A2 or the ratio A1/A3, wherein: A1 is the maximum absorption between 400 nm and 550 nm; A2 is the maximum absorption between 700 to 1100 nm; A3 is the maximum absorption between 700 to 1600 nm. Preferred inorganic materials are titanium nitride, indium tin oxide and lanthanum hexaboride.
Abstract:
A method to render stone, ceramic, or cementitious structures water repellent is disclosed. The method includes the step of contacting the stone, ceramic, or cementitious structures with an alkylphosphonic acid. The alkylphosphonic acid can be dispersed in an aqueous medium and can be at least partially neutralized with ammonia, an amine, or a basic alkali salt.
Abstract:
Filters for removing particulate and gaseous organic and inorganic materials from a fluid stream are disclosed. The filter may contain a polymer matrix and optional sequestering agents. Methods of making the filters are also disclosed. Methods of using the filters to remove one or more materials from a fluid stream, such as an air stream, are also disclosed.
Abstract:
Compositions comprising a polymer and an exfoliated metal phosphonate are provided. Processes for making such polymer compositions and articles formed from such polymer compositions are also provided. Compositions according to the invention are useful in polymer applications in which barrier properties are of concern, such as in plastic food and beverage containers.