摘要:
A method for forming spacers of specific dimensions on a polysilicon gate electrode protects the sidewalls of the polysilicon gate electrode during selective epitaxial growth. The spacers, whether asymmetric or symmetric, are precisely defined by using the same specific exposure tool, such as a 193 nm wavelength step and scan exposure tool, and the same pattern reticle, in both the defining of the polysilicon gate electrode pattern and the pattern spacer, while employing tight alignment specifications.
摘要:
A strained silicon semiconductor arrangement with a shallow trench isolation (STI) structure has a strained silicon (Si) layer formed on a silicon germanium (SiGe) layer. A trench extends through the Si layer into the SiGe layer, and sidewall spacers are employed that cover the entirety of the sidewalls within the trench in the SiGe layer. Following STI fill, polish and nitride stripping process steps, further processing can be performed without concern of the SiGe layer being exposed to a silicide formation process.
摘要:
A method for forming spacers of specific dimensions on a polysilicon gate electrode protects the sidewalls of the polysilicon gate electrode during selective epitaxial growth. The spacers, whether asymmetric or symmetric, are precisely defined by using the same specific exposure tool, such as a 193 nm wavelength step and scan exposure tool, and the same pattern reticle, in both the defining of the polysilicon gate electrode pattern and the pattern spacer, while employing tight alignment specifications.
摘要:
A strained silicon semiconductor arrangement with a shallow trench isolation (STI) structure has a strained silicon (Si) layer formed on a silicon germanium (SiGe) layer. A trench extends through the Si layer into the SiGe layer, and sidewall spacers are employed that cover the entirety of the sidewalls within the trench in the SiGe layer. Following STI fill, polish and nitride stripping process steps, further processing can be performed without concern of the SiGe layer being exposed to a silicide formation process.
摘要:
To reduce the width of a MOSFET gate, the gate is formed with a hardmask formed thereupon. An isotropic etch is then performed to trim the gate in order to reduce the width of the gate. The resulting gate may be formed with a width that is narrower than a minimum width achievable solely through conventional projection lithography techniques.
摘要:
Gate electrodes with selectively tuned channel thicknesses are formed by selective epitaxial growth. Embodiments include forming shallow trench isolation regions in an SOI substrate, selectively removing the nitride stop layer and pad oxide layer in an exposed particular active region, and implementing selective epitaxial growth to increase the thickness of the semiconductor layer in the particular active region. Subsequently, the remaining nitride stop and pad oxide layers in other active regions are removed, gate dielectric layers formed, as by thermal oxidation, and the transistors completed.
摘要:
STI divot formation is eliminated or substantially reduced by employing a very thin nitride polish stop layer, e.g., no thicker than 400 Å. The very thin nitride polish stop layer is retained in place during subsequent masking, implanting and cleaning steps to form dopant regions, and is removed prior to gate oxide and gate electrode formation.
摘要:
Gate spacers are formed in FinFETS having a bottom portion of a first material extending to the height of the fins, and a top portion of a second material extending above the fins. An embodiment includes forming a fin structure on a substrate, the fin structure having a height and having a top surface and side surfaces, forming a gate substantially perpendicular to the fin structure over a portion of the top and side surfaces, for example over a center portion, forming a planarizing layer over the gate, the fin structure, and the substrate, removing the planarizing layer from the substrate, gate, and fin structure down to the height of the fin structure, and forming spacers on the fin structure and on the planarizing layer, adjacent the gate.
摘要:
A BARC comprising materials having a lower pinhole density than that of silicon oxynitride and materials having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of polysilicon than that of amorphous carbon is employed to reduce deformation of a pattern to be formed in a patternable layer. The patternable layer is formed over a substrate. A multi-layered anti-reflective coating is formed over the patternable layer. A photoresist pattern is formed on the coating. The coating may comprise an amorphous carbon layer formed over the patternable layer and a SiC layer having a lower pinhole density than the pinhole density of SiON formed over the amorphous carbon layer. The coating may also be formed over a polysilicon layer and comprise a thermal expansion buffer layer having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of polysilicon than that of amorphous carbon.
摘要:
The present invention provides for a method and an apparatus for controlling critical dimensions. At least one run of semiconductor devices is processed. A critical dimension measurement is performed upon at least one of the processed semiconductor device. An analysis of the critical dimension measurement is performed. A secondary process upon the semiconductor device in response to the critical dimension analysis is performed.