摘要:
A driving circuit for driving an in-plane moving particle device has a pixel (P) comprising movable charged particles (PA). The pixel (P) has a reservoir electrode (RE), a display electrode (DE), and a gate electrode (GE) laterally placed in-between the reservoir electrode (RE) and the display electrode (DE). The driving circuit (DC) comprises a driver (DR), a controller (CO) which receives an input signal (OS) representing an image to be displayed on the moving particle device. The controller (CO) controls the driver (DR) to supply a first voltage difference (VD1) between the reservoir electrode (RE) and the gate electrode (GE) and a second voltage difference (VD2) between the gate electrode (GE) and the display electrode (DE). The image is written to the pixel (P) during a write phase (TW) by moving particles (PA) from the reservoir electrode (RE) via the gate electrode (GE) to the display electrode (DE) if the optical state of the pixel (P) should change in conformity with the image. If during the write phase (TW) the optical state of the pixel (P) should not change, the first voltage difference (VD1) has a first write level and the second voltage difference (VD2) has a second write level, both write levels are selected to repulse the particles (PA) from the gate electrode (GE). During a repulsion period (TR), the first voltage difference (VD1) has a level more repulsive to the particles than the first write level, and/or the second voltage difference (VD2) has a level more repulsive than the second write level.
摘要:
A display device and a method for driving the display device is disclosed. The display device comprises drive circuitry (35) and a plurality of pixels (PIX1, PIX2, PIX3, PIX4, PIX5, PIX6) having movable charged particles (116). The drive circuitry is configured to apply control signals to the pixels to move the charged particles between first (110) and second (112) regions of each pixel in order to alter the optical appearance of each pixel. The method for each pixel comprises a pre-addressing stage (PRA) of moving the charged particles towards the boundary (114) between the first and second regions, and then an addressing stage (ADD) of moving the particles to one side or the other side of the boundary, in dependence on the desired optical appearance of the pixel.
摘要:
A display device and a method for driving the display device is disclosed. The display device comprises drive circuitry (35) and a plurality of pixels (PIX1, PIX2, PIX3, PIX4, PIX5, PIX6) having movable charged particles (116). The drive circuitry is configured to apply control signals to the pixels to move the charged particles between first (110) and second (112) regions of each pixel in order to alter the optical appearance of each pixel. The method for each pixel comprises a pre-addressing stage (PRA) of moving the charged particles towards the boundary (114) between the first and second regions, and then an addressing stage (ADD) of moving the particles to one side or the other side of the boundary, in dependence on the desired optical appearance of the pixel.
摘要:
A system (102) comprising a box (104) for implanting in a mammal body part (106), which box is provided with a first electrical contact (110, 121, 114, 116, 118, 120), and a module (108) for accommodating in the box, which module is provided with a second electrical contact (122, 124, 126) for cooperation with said first electrical contact. The first electrical contact and the second electrical contact are mutually movable, at least in a stationary accommodation of the module in the box, between a contact position in which said first and second electrical contacts are electrically connected, and a non-contact position in which said first and second electrical contacts are separated from each other.
摘要:
A method and a control system (20) are provided for determining a relation between stimulation settings for a brain stimulation probe (10) and a corresponding V-field. The brain stimulation probe (10) comprises multiple stimulation electrodes (11). The V-field is an electrical field in brain tissue surrounding the stimulation electrodes (11). The method comprises sequentially applying a test current to n stimulation electrodes (11), n being a number between 2 and the number of stimulation electrodes (11) of the brain stimulation probe (10), for each test current at one of the n stimulation electrodes (11), measuring a resulting excitation voltage at m stimulation electrodes, m being a number between 2 and the number of stimulation electrodes (11) of the brain stimulation probe (10), from the stimulation settings and the measured excitation voltages, deriving an (m*{acute over (η)}) coupling matrix, an element (q, p) in the coupling matrix reflecting an amount of electrical impedance between two of the stimulation electrodes (11), and using the coupling matrix for determining the relation between the stimulation settings and the corresponding V-field.
摘要:
A system for communicating information between at least two medical devices implanted within the body of a subject using volume conduction of electrical signals as a means of communication and wherein one of the implanted medical devices is configured to provide electrical stimulation to the tissue is disclosed. The system comprises a first implant device having at least two transmit electrodes configured to transmit electrical stimulation pulses, wherein one of the electrodes may be a common return electrode, an encoding means configured to employ a channel as a transmitter transmission medium for stimulation pulses and encoding the information into the stimulation pulses, a second implant device having at least two receive electrodes configured to receive the transmitted stimulation pulses with encoded information, and a decoding means configured to decode the information encoded into the stimulation pulses. The disclosed system provides reliable and efficient communication between implantable receiver devices.
摘要:
The invention relates to a sensing apparatus for sensing an object. The sensing apparatus comprises an ultrasound unit (11) for ultrasonically sensing the object (4), an electrical energy application unit (9) for applying electrical energy to the object (4), and an ultrasound unit shielding element (16) for electrically shielding the ultrasound unit (11), wherein the ultrasound unit shielding element (16) is electrically connected to the electrical energy application unit (9). Since the ultrasound unit shielding element electrically shields the ultrasound unit, the ultrasound sensing of the object is less influenced by a capacitive coupling of the application of electrical energy, in particular, of an RF signal which may be used for applying the electrical energy, into the ultrasound sensing. A further reduction of this influence is achieved by electrically connecting the ultrasound unit shielding element to the electrical energy application unit.
摘要:
An electronic apparatus with a DC power source and power-consuming electronic circuits and a method of transferring power between these components include converting the DC voltage of the power source into an AC voltage which is then transferred via a connector to the electronic circuits.
摘要:
The invention relates to a probe for an implantable electro-stimulation device. The probe (20) has a distal end (12) and a proximal end (13), and moreover comprises: one or more electrodes (11) a shield (21) of conducting material covering a major part of the probe, said shield extending from the vicinity of at least one of the one or more electrodes (11) towards the proximal end (13) or towards the distal end (12) of the probe (20); and a layer (22a, 22b) of insulating material covering part of the shield (21) in the vicinity of the at least one of the one or more electrodes. The shield protects wires (14), extending from electrodes to the proximal end of the probe, from undesired interference of external RF fields. The exposed part of the shield not covered by the layer of insulating material serves as a return electrode for the electrostimulation signal path.
摘要:
The present invention relates to a drive method for an electrophoretic cell and a device adapted to implement the method. The cell comprises a first storage electrode (24), a second storage electrode (22), a first target area electrode (28), a second target area electrode (30), a first type of particle (32) and a second type of particles (33), said second type of particles being of opposite polarity to the first type of particles. An area (31) extending between the target area electrodes (28, 30) is a target area. The method comprises a reset phase (110), wherein said first and second type of particle are reset to determined reset positions, a first write phase (120), wherein the first type of particles are moved to and/or from the storage electrodes and change in amount in said target area (31), a second write phase (140) similar to the first write phase but for the second type of particles, and a spread phase (150) so that the particles in said target area (31) distribute and mix. The method allows for short distance movements and two particle type in the same cell can be written comparatively fast.