摘要:
Disclosed is a method and system for inserting redundant paths into an integrated circuit. Particularly, the invention provides a method for identifying a single via in a first path connecting two elements, determining if an alternate route is available for connecting the two elements (other than a redundant via), and for inserting a second path into the available alternate route. The combination of the first and second paths provides greater redundancy than inserting a redundant via alone. More importantly, such redundant paths provide for redundancy when congestion prevents a redundant via from being inserted adjacent to the single via. An embodiment of the method further comprises removing the single via and any redundant wire segments, if all of the additional vias used to form the second path can be made redundant.
摘要:
Embodiments herein provide a method and computer program product for optimizing router settings to increase IC yield. A method begins by reviewing yield data in an IC manufacturing line to identify structure-specific mechanisms that impact IC yield. Next, the method establishes a structural identifier for each structure-specific mechanism, wherein the structural identifiers include wire codes, tags, and/or unique identifiers. Different structural identifiers are established for wires having different widths. Furthermore, the method establishes a weighting factor for each structure-specific mechanism, wherein higher weighting factors are established for structure-specific mechanisms comprising thick wires proximate to multiple thick wires. The method establishes the structural identifiers and the weighting factors for incidence of spacing between single wide lines, double wide lines, and triple wide lines and for incidence of wires above large metal lands. Subsequently, the router settings are modified based on the structural identifiers and the weighting factors to minimize systematic defects.
摘要:
Disclosed is a method that predicts test yield for a semiconductor product, prior to design layout. This is accomplished by applying a critical area analysis to individual library elements that are used to form a specific product and by estimating the test yield impact of combining these library elements. For example, the method considers the test yield impact of sensitivity to library element to library element shorts and the test yield impact of sensitivity to wiring faults. The disclosed method further allows die size growth to be traded off against the use of library elements with higher test yield in order to provide an optimal design solution. Thus, the method may be used to modify library element selection so as to optimize test yield. Lastly, the method further repeats itself at key design checkpoints to revalidate initial test yield (and cost) assumptions made when the product was quoted to a customer. Thus, the method provides increased accuracy of test yield estimate from initial sizing through design and further allows designs to be modified to improve test yield.
摘要:
A method, apparatus, and computer program product that performs yield estimates using critical area analysis on integrated circuits having redundant and non-redundant elements. The non-redundant elements are ignored or removed from the critical area analysis performed for undesired opens.
摘要:
A method of estimating integrated circuit yield comprises providing an integrated circuit layout and a set of systematic defects based on a manufacturing process. Next, the method represents a systematic defect by modifying structures in the integrated circuit layout to create modified structures. More specifically, for short-circuit-causing defects, the method pre-expands the structures when the structures comprise a higher systematic defect sensitivity level, and pre-shrinks the structures when the structures comprise a lower systematic defect sensitivity level. Following this, a critical area analysis is performed on the integrated circuit layout using the modified structures, wherein dot-throwing, geometric expansion, or Voronoi diagrams are used. The method then computes a fault density value, random defects and systematic defects are computed. The fault density value is subsequently compared to a predetermined value, wherein the predetermined value is determined using test structures and/or yield data from a target manufacturing process.
摘要:
A circuit layout methology is provided for eliminating the extra processing time and file-space requirements associated with the optical proximity correction (OPC) of a VLSI design. The methodology starts with the design rules for a given manufacturing technology and establishes a new set of layer-specific grid values. A layout obeying these new grid requirements leads to a significant reduction in data preparation time, cost, and file size. A layout-migration tool can be used to modify an existing layout in order to enforce the new grid requirements.
摘要:
Embodiments herein present a method, service, computer program product, etc. or performing yield-aware IC routing for a design. The method performs an initial global routing which satisfies wiring congestion constraints. Next, the method performs wire spreading and wire widening on the global route, layer by layer, based on, for example, a quadratic congestion optimization. Following this, timing closure is performed on the global route using results of the wire spreading and wire widening. Post-routing wiring width and wire spreading adjustments are made using the critical area yield model. In addition, the method allows for the optimization of already-routed data.
摘要:
A circuit layout methology is provided for eliminating the extra processing time and file-space requirements associated with the optical proximity correction (OPC) of a VLSI design. The methodology starts with the design rules for a given manufacturing technology and establishes a new set of layer-specific grid values. A layout obeying these new grid requirements leads to a significant reduction in data preparation time, cost, and file size. A layout-migration tool can be used to modify an existing layout in order to enforce the new grid requirements.
摘要:
Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
摘要:
A method of improving a circuit design for a very large scale integrated circuit is provided which represents a plurality of semiconductor devices interconnected in a circuit. It is determined whether an edge of a feature of one of the plurality of semiconductor devices in the design can be moved in a first direction by a distance within a permitted range, such that a performance goal and a matching goal for the circuit are served. If so, the edge is moved in the first direction by the distance calculated to best serve the performance goal and the matching goal. The foregoing steps may be repeated for each of the plurality of semiconductor devices. If necessary, the foregoing steps may be repeated until the performance goal and matching goal for the circuit are deemed to be adequately served.