摘要:
An organic electroluminescent component with a layer arrangement includes a first electrode layer, an inorganic layer which conducts electrons, one or several optoelectronically active layers with at least one light-emitting layer which comprises an organic emitter, and a second electrode layer. The inorganic layer which conducts electrons is an N-type conducting oxide of a transition metal chosen from the group consisting of zirconium oxide, hafnium oxide, vanadium oxide, barium titanate, barium-strontium titanate, strontium titanate, calcium titanate, calcium zirconate, potassium tantalate, and potassium niobate.
摘要:
An organic electroluminescent component with a layer structure comprising a) a substrate layer, b) a first transparent electrode layer, c) one or several functional optoelectronic layer(s) with c1) possibly, one or several p-type organic materials with one or several singlet states and one or several triplet states, and c2) a luminescent material with one or several organometallic complexes of a rare earth metal ion with organic ligands, in which the rare earth metal ion has an emitting state and the organic ligands have one or several singlet states and one or several triplet states, and c3) one or several n-type organic materials with one or several singlet states and one or several triplet states, and d) a second electrode, wherein the triplet state of lowest energy of the ligands is lower than the triplet states of lowest energy of the n-type and/or the p-type organic materials but higher than above the emitting state of the rare earth metal ion excels through a surprisingly increased luminous efficacy, and in addition has a very good thermal stability while it can be manufactured in a simple process.
摘要:
A color display device, with an electron beam source and with an arrangement of pixels defined by blue, green and red-luminescing material, and including means for exciting the pixels, by scanning the pixel arrangement with excitation pulses a line at a time, exhibits enhanced luminance, is enhanced at a given radiation power and improved linearity of the luminance in dependence upon the electron energy density, by using luminescent materials at least two of which have a luminescence decay time shorter than the excitation pulse lengths.
摘要:
The present invention relates to Luminescent nanoparticles comprising (a) a core made from a luminescent metal salt selected from phosphates, sulfates or fluorides, being surrounded by (b) a shell made from a metal salt or oxide capable of preventing or reducing energy transfer from the core after its electronic excitation to the surface of the nanoparticle, e.g. a shell made from a non-luminescent metal salt or oxide, which are characterized by higher quantum yields and can be used in various fields including light generation and security marking.
摘要:
The present invention relates to Luminescent nanoparticles comprising (a) a core made from a luminescent metal salt selected from phosphates, sulfates or fluorides, being surrounded by (b) a shell made from a metal salt or oxide capable of preventing or reducing energy transfer from the core after its electronic excitation to the surface of the nanoparticle, e.g. a shell made from a non-luminescent metal salt or oxide, which are characterized by higher quantum yields and can be used in various fields including light generation and security marking.
摘要:
A process for synthesizing nanoparticles, in particular metal salt nanoparticles. To the synthesis mixture is added a modifying reagent which binds, by means of a first functional group, to the nanoparticle surface and which carries a second functional group for binding to molecules which are specifically selected in dependence on the subsequent use of the nanoparticles. This dispenses with a postsynthetic, separate, application-specific modification step. A new substance class, the pentaalkyl iminobis(methylenephosphono) carboxylates, are particularly suitable for this purpose. These modifying reagents permit the nanoparticles to grow in a specifically controlled manner and, at the same time, modify the surface of the growing nanoparticles, (in-situ) during the synthesis, such that the particles can be very readily dissolved in a large number of solvents and carry functional groups for coupling on molecules, resulting in the particles having, immediately after having been synthesized, a certain all-round usability.
摘要:
Luminescent inorganic nanoparticles comprising: (a) a core made from a first metal salt or oxide being surrounded by (b) a shell made from a second metal salt or oxide being luminescent and having non-semiconductor properties. These nanoparticles can be advantageously used in (fluorescence) resonance energy transfer ((F)RET)-based bioassays in view of their higher (F)RET efficiency.
摘要:
The present invention relates to a surface treatment method for nanoparticles. The present invention particularly relates to a surface treatment method for nanoparticles, which increases the dispersion ability of the nanoparticles in a solvent, and in which a mixture made of a polyvalent acid and a nitrogen-containing base, such as an amine, or a salt of a polyvalent acid and a nitrogen-containing base, such as ammonium salt, or also a corresponding betaine, is used. The present invention also relates to surface-modified nanoparticles, which can be obtained by the inventive method.
摘要:
The present invention relates to luminescent inorganic nanoparticles comprising (a) a core made from a first metal salt or oxide being surrounded by (b) a shell made from a second metal salt or oxide being luminescent and having non-semiconductor properties. These particles can be advantageously used in (fluorescence) resonance energy transfer ((F)RET)-based bioassays in view of their higher (F)RET efficiency.
摘要:
The present invention relates to an electrochronic element including the following elements: an electrode (E1), an electrochromic functional layer (FS), an ion-conducting electrolyte (EY) a layer with high electrical charge capacity (SK), a counter-electrode (E2), the electrochromic functional layer (FS) being a nanoporous doped semiconductor layer having structure sizes smaller than 50 nm.