摘要:
Hydrogen is produced by reacting carbon monoxide with steam at a temperature of at least 200.degree.F. in the presence of a supported catalyst containing: (1) at least one alkali metal compound derived from an acid having an ionization constant below 1 .times. 10.sup..sup.-3, (2) a metallic hydrogenation-dehydrogenation material, and (3) a halogen moiety. The ratio of metal component to alkali metal compound, each calculated on the basis of the oxide thereof, ranges from 0.0001 to about 10 parts by weight per part by weight of the alkali metal compound. The halide constituent is present in amounts in excess of about 0.01 weight %, based on total catalyst. A preferred catalyst composition comprises potassium carbonate, a mixture of cobalt and molybdenum oxides and combined chlorine contained on an alumina support.
摘要:
Hydrogen is produced by reacting carbon monoxide with steam at a temperature of at least 200.degree. F. in the presence of a supported catalyst containing: (1) at least one alkali metal compound derived from an acid having an ionization constant below 1 .times. 10.sup.-3, (2) a metallic hydrogenation- dehydrogenation material, and (3) a halogen moiety. The ratio of metal component to alkali metal compound, each calculated on the basis of the oxide thereof, ranges from 0.0001 to about 10 parts by weight per part by weight of the alkali metal compound. The halide constituent is present in amounts in excess of about 0.01 weight %, based on total catalyst. A preferred catalyst composition comprises potassium carbonate, a mixture of cobalt and molybdenum oxides and combined chlorine contained on an alumina support.
摘要:
A catalyst is provided which comprises a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area aluminum alloy powder support prepared by atomizing the metal alloy. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
摘要:
A catalyst is provided which comprises a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area aluminum alloy powder support prepared by atomizing the metal alloy. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
摘要:
The present invention relates to catalysts for hydrodesulfurizing naphtha streams. The catalysts are comprised of a suitable support material, and about 1 to about 10 wt. % MoO.sub.3, about 0.1 to about 5 wt. % CoO supported on a suitable support material. They are also characterized as having an average medium pore diameter from about 60 .ANG. to 200 .ANG., a Co/Mo atomic ratio of about 0.1 to about 1.0, a MoO.sub.3 surface concentration of about 0.5.times.10.sup.-4 to about 3.0.times.10.sup.-4 g MoO.sub.3 /m.sup.2, and an average particle size of less than about 2.0 mm in diameter.
摘要:
A hydrotreating process using a sulfided catalyst composition comprised of at least one Group VIII metal and at least one Group VI metal on an inorganic oxide support, which sulfided catalyst is derived from a catalyst precursor comprised of salts and/or complexes of a Group VIII metal(s) with a Group VI metal heteropolyacid on an inorganic oxide support material, wherein the concentration of Group VIII metal ranges from about 2 to 20 wt. %, and the concentration of Group VI metal ranges from 5 to 50 wt. %, which percents are on support and which catalyst composition is substantially free of free water.
摘要:
A catalyst composition having superior hydrotreating activity which catalyst is comprised of salts and/or complexes of Group VIII metals with Group VI metal heteropolyacids on an inorganic oxide support material, wherein the concentration of Group VIII metal ranges from about 2 to 20 wt. %, and the concentration of Group VI metal ranges from 5 to 50 wt. %, which percents are on support and which catalyst composition is substantially free of free water.
摘要:
The present invention relates to the preparation of catalysts for heteroatom removal, particularly sulfur, from petroleum and synthetic fuel feedstocks. The catalyst is comprised of at least one Group VIII metal, and at least one Group VI metal, on a refractory support. The catalyst is prepared by: impregnating an inorganic oxide support material with a Group VI heteropolyacid; treating said impregnated support with an aqueous solution of a reducing agent which is capable of at least partially reducing the Group VI metal of the heteropolyacid; drying said treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; impregnating the treated support with a Group VIII metal salt of an acid having an acidity less than that of the Group VI heteropolyacid; drying said impregnated treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; and sulfiding said impregnated support, thereby forming the catalysts.
摘要:
A method for the preparation of catalysts for heteroatom removal, particularly sulfur, from petroleum and synthetic fuel feedstocks. The catalyst is comprised of at least one Group VIII metal, and at least one Group VI metal, on a refractory support. The present method for preparing said catalysts comprises impregnating the Group VIII metal onto the refractory support by use of a Group VIII metal salt of an acid, and impregnating the Group VI metal onto the support by way of a Group VI heteropolyacid, wherein the acid comprising the salt of the Group VIII metal is less acidic than the heteropolyacid. The catalysts are then subjected to a heat treatment which includes a first phase wherein the catalyst is dried of free water and a second phase wherein the catalyst is heated to a temperature up to about 300.degree. C. at a heating rate from about 0.15.degree. C./min to about 15.degree. C./min.
摘要:
A method of reducing the concentration of metal contaminants, such as vanadium and nickel, in a petroleum distillate or other hydrocarbonaceous liquid is disclosed. The method comprises demetallizing the distillate over an activated-carbon supported vanadium catalyst.