摘要:
A process for selective catalytic cracking of a petroleum-based feedstock to produce a product having a high yield of liquified petroleum gas (LPG) and light olefins having 3 to 4 carbons includes providing a fluidized bed reactor which is a high velocity riser, continuously circulating fluidized bed reactor; providing a solid acidic catalyst comprised of: from 1 to 6% by wt. of ultra stable Y-zeolite; from 8-25% by wt. of Pentasil zeolite which is shape selective; from 0-8% by wt. of an active material which is bottom selective; from 0-1% by wt. of rare earth constituents; and from 91 to 60% by wt. of nonacidic constituents and binder; charging the fluidized bed reactor with the solid acidic catalyst and the petroleum-based feedstock; and cracking the petroleum-based feedstock in the presence of the solid acidic catalyst in the fluidized bed reactor. The reactor is operated at a Weight Hourly Space Velocity (WHSV) ranging from 40 to 120 hr.sup.-1, a ratio of solid acidic catalyst to petroleum-based feedstock ranging from 15 to 25, a temperature at the top of the high velocity riser ranging from 530.degree. C. to 600.degree. C., recycled riser products ranging from 0 to 40%, a pressure in the fluidized bed reactor ranging from 1.0 to 4.0 kg/cm.sup.2 g, and an amount of steam for dilution and quenching of hydrocarbons ranging from 3 to 50 wt. % of the petroleum-based feedstock. The Pentasil zeolite has a pore size ranging from 5 to 6 .ANG. so that the catalyst is highly selective for LPG and C.sub.4 light olefins with minimum dry gas and coke make, and so that the vanadium tolerance of the catalyst is increased and ranges up to 21,000 PPM. The process produces a LPG yield ranging up to 40 to 65 wt. % of the fresh petroleum-based feedstock, a selectivity for the light olefins of at least 40 wt. %, and a selectivity for the LPG of at least 45 wt.
摘要:
A fluidized catalytic cracking apparatus includes a riser containing a regenerated catalyst and adsorbant, and has a first inlet for introduction of high velocity steam, a second inlet for introduction of a feed stream containing heavy residual fractions with high concentrations of conradson coke, metals including vanadium and nickel, and additional poisons including nitrogen, a third inlet for introduction of an adsorbent, and a fourth inlet disposed above the third inlet means for introduction of a regenerated catalyst, the adsorbent having a particle size which is larger than that of the regenerated catalyst. A stripper is provided into which the riser extends for causing separation of a hydrocarbon fraction from spent catalyst and adsorbent, and a separator is connected to the stripper and has a base, an inlet at the base for introduction of steam in the upward direction so as to provide a transport velocity in the upward direction for the spent catalyst and cause a separation of the particles of the spent catalyst from the adsorbent in use. A regenerator is connected to the separator and has an outlet and is in flow communication with the fourth inlet for introduction of the regenerated catalyst into the riser. A burner is provided for receiving the adsorbent from the separator and for causing a regeneration thereof, the burner having an inlet for introduction of oxygen containing gas and an outlet in flow communication with the third inlet for introduction of the adsorbent into the riser. A lift line is connected between the separator and the regenerator for allowing a flow of the spent catalyst from the separator into the regenerator while leaving the adsorbent within the separator in a fluidized condition the lift line having a plurality of steam inlets disposed at different elevations along its length for introduction of steam to provide said transport velocity.
摘要:
A fluidized catalytic cracking process for catalytically cracking a feed to lighter products includes introducing a heated catalyst and the feed into a bottom riser of a fluidized catalytic cracking apparatus and allowing the heated catalyst and the feed to preaccelerate upwardly within the bottom riser as a mixture; flowing the mixture upwardly from the bottom riser through a plurality of microriser tubes disposed within a regenerator under conditions effective to cause a cracking reaction of the hydrocarbons and result in a mixture including coked catalyst and hydrocarbon vapors; passing the mixture from the microriser tubes through a catalyst separator for separating the coked catalyst from the hydrocarbon vapors; collecting coked catalyst in a stripper for stripping out hydrocarbon vapors carried along with the coked catalyst and introducing the coked catalyst collected into a regenerator; simultaneous with flowing the mixture, combusting the coked catalyst within the regenerator under conditions effective to cause regeneration of the catalyst so that hot regenerated catalyst is produced and heat transferred to the microriser tubes; introducing the hot regenerated catalyst from the regenerator into the bottom riser for facilitating continuous operation; and directing hydrocarbon vapors from the catalyst separator and from the stripper to a fractionator for separation of products.
摘要:
A sequential processing for heavy petroleum residues is disclosed which uses a separate mixture of catalyst and adsorbent. The solid adsorbent and FCC (fluids catalytic cracking) catalyst particles differ significant at least on particle size or density or both. The adsorbent preferably consist of calcined coke or metal oxides of Al, Si, or Mg having enhanced ability of selectively capture different impurities of the residual oil. The adsorbent particles first treat the residual hydrocarbons in the riser bottom end subsequently the actual catalyst tales care of catalytic cracking in the upper section of the riser. The spent solid mixture is fed to the catalyst separator which uses steam at sufficiently high velocity but at lower temperature to lift the catalyst particles out of the separator. Such a novel low temperature faster separation minimizes Vanadium mobility and deactivation of the catalyst. A net coke stream is withdrawn from the separator/burner especially while processing residues above 5 wt % CCR. This allows successful processing of even very heavy residues with CCR of 20 wt % and metals (vanadium & nickel) or 300 ppm, without requiring higher catalyst make up or catalyst and edsorbent cooling.
摘要:
The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2 (g) and weight hourly space velocity in range of 0.1 to 20 hour−1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
摘要:
A fluidized catalytic cracking apparatus for catalytically cracking a heavy hydrocarbon feed to lighter products includes a regenerator shell for heating spent catalyst, the regenerator shell having a bottom riser for introduction of the heavy hydrocarbon feed, a catalyst, and steam, and from which flows a stream, the bottom riser having a distributor for allowing the stream from the bottom riser to be distributed into a plurality of reaction tubes positioned within the regenerator shell; a catalyst separator connected to an upper end of the regenerator shell; a stripper connected to the catalyst separator to cause a stripping of the catalyst and the spent catalyst feed to the regenerator shell; and an air inlet provided in the regenerator shell so as to cause a combustion within the regenerator shell.
摘要:
A process for converting undesirable olefinic hydrocarbon streams to hydrogen and petrochemical feedstock e.g. light olefins in C.sub.2 -C.sub.4 range and aromatics especially toluene and xylenes, which comprises simultaneous cracking and reforming at olefin rich hydrocarbons using a catalyst consisting of dehydrogenating metal components, shape selective zeolite components and large pore acidic components in different proportions in a circulating fluidized bed reactor-regenerator system having reactor temperature within 450-750.degree. C. and WHSV of 0.1-60 hour.sup.-1.
摘要:
According to this invention, there is provided a process and apparatus for catalytic cracking of various petroleum based heavy feed stocks in the presence of solid zeolite catalyst and high pore size acidic components for selective bottom cracking and mixtures thereof, in multiple riser type continuously circulating fluidized bed reactors operated at different severities to produce high yield of middle distillates, in the range of 50–65 wt % of fresh feed.
摘要:
A process is disclosed for producing needle coke from heavy atmospheric distillation residues having sulfur no more than 0.7 wt %, which process involves the steps of heating the feedstock to a temperature in the range of 440 to 520° C. for thermal cracking in a soaking column under pressure in the range of 1 to 10 kg/cm2 to separate the easily cokable material, separating the cracked products in a quench column and a distillation column and then subjecting the hydrocarbon fraction from the bottom of the quench column and a hydrocarbon fraction having a boiling point in the range of 380 to 480° C. from the distillation column and/or any other suitable heavier hydrocarbon streams in a definite ratio depending on certain characteristic parameters to thermal cracking in a second soaking column at a temperature of 460 to 540° C., pressure in the range of 2 to 20 kg/cm2 in presence of added quantity of steam for formation of a mesophase carbonaceous structure which on steam stripping and cooling forms a solid crystalline coke suitable for manufacturing of graphite electrode of large diameter having co-efficient of thermal expansion lower than 1.1×10−6/° C. measured on graphite artifact in the temperature range of 25 to 525° C.
摘要:
The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2(g) and weight hourly space velocity in range of 0.1 to 20 hour−1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
摘要翻译:本发明涉及一种将95%真实沸点低于400℃的烃流转化成非常高产率的进料和高辛烷值汽油的45-65重量%的液化石油气的方法, 所述方法包括使用固体可流化催化剂催化裂化烃,所述固体可流化催化剂包含具有或不具有Y-沸石的中孔结晶铝硅酸盐,非结晶酸性物质或其组合,其在400至550℃的温度范围内操作的流化密床反应器 ℃,压力范围为2至20kg / cm 2(g),重时空速为0.1至20小时的范围,其中所述致密的 床反应器与催化剂汽提器和再生器流动连通,用于在存在空气和/或含氧气体的情况下连续再生焦化催化剂,催化剂在反应器 - 再生器系统之间连续循环。